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Effect of proton conductivity transients on PEM fuel cell impedance: 
Formation of a low–frequency inductive loop 
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A B S T R A C T   

A model for PEMFC cathode impedance is developed. The model includes transient response of catalyst layer 
proton conductivity to cell current density variation. Analytical solution shows that transient conductivity leads 
to formation of a low–frequency inductive loop in the Nyquist spectrum. This loop has been observed in 
numerous experiments and its nature has long been discussed in literature. The results of this work provide a new 
mechanism of loop formation.   

1. Introduction 

Liquid water is one of the key ingredients for PEM fuel cell operation 
as polymer electrolyte membrane separating anode and cathode con
ducts protons only in hydrated state. Amount of water produced in the 
oxygen reduction reaction (ORR) on the cathode side is usually insuf
ficient to provide fully hydrated state of the membrane and external 
humidification of hydrogen and air streams is necessary. 

This leads to quite complicated problem of water transport and 
transformation in the cell. Water vapor added to the hydrogen flux is 
transported through the membrane with proton current by electroos
motic drag, while water produced on the cathode side is transported to 
the anode by back diffusion. Inside the membrane, water exists in liquid 
state due to huge pressure provided by electric fields of separated 
charges [1]; membrane surface performs “phase transformation” of 
water vapor to liquid according to water sorption isotherm [2]. 

The membrane water content is usually expressed as a number of 
water molecules λs per sulphonic group. Springer, Zawodzinski and 
Gottesfeld [3] measured water diffusion Dw and drag nd coefficients and 
showed that Dw and nd depend on λs. This makes the problem of water 
transport through the cell sandwich nonlinear. 

In Nafion membranes, a linear dependence of membrane proton 
conductivity σm on λs at the cell temperature of 273+30 K has been 
reported [3]: 

σm =

{
0.005139λs − 0.00326, λs > 1, S cm− 1

0.005139 λs⩽1 (1)  

The Arrhenius temperature factor for σm has also been given in [3]. 
Proton transport in the cathode catalyst layer (CCL) is provided by a 

cluster of membrane phase. Much like in the bulk membrane, water 
transport in the membrane phase is due to electroosmotic drag and 
diffusion. The mechanism of interfacial water transformation at the 
ionomer/pore interface inside the CCL is not well understood. The 
proton conductivity of CCL σ is usually calculated by multiplying Eq. (1) 
by the Bruggeman correction factor ∊1.5, where ∊ is the volume fraction 
of Nafion in the CCL [4]: 

σ = ∊1.5σm (2)  

Not surprisingly, CCL proton conductivity in operating PEMFC depends 
on the cell current density j. Impedance spectroscopy shows almost 
linear growth of σ with j (Fig. 1). This growth can be attributed to 
growing with the current liquid water content of the CCL, translating the 
linear growth of σ with λs, Eq. (1), into the linear growth of σ with j. 

From this discussion it follows that the response of σ on the change in 
cell current is not immediate: some relaxation time τs determined by 
water drag, diffusion and sorption/desorption is needed for σ to reach a 
new steady state. In this work, a model for the CCL impedance taking 
into account transients of proton conductivity is developed. In the case 
of fast oxygen transport, analytical solution for the CCL impedance is 
derived. The Nyquist spectrum exhibits a low–frequency (LF) inductive 
loop representing impedance due to variable proton conductivity with 
time. 
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2. Model 

2.1. Equation for the conductivity variation with time 

Fig. 1 shows that the CCL proton conductivity increases with the cell 
current density from σ* ≃ 5 mS cm− 1 at small currents up to ≃ 15–20 mS 
cm− 1 at higher currents. For simplicity, we will assume that the growth 
of σ with j up to 1 A cm− 2 is linear 

σ0( j
)
= σ*

(
1+ βj

)
, 0⩽j⩽1 A cm− 2 (3)  

where σ* ≃ 5 mS cm− 1 is the conductivity at zero current, and β de
termines the slope of the straight line. 

As discussed above, we will assume that some relaxation time τs is 
necessary to establish equilibrium between the water flux and mem
brane phase water content in the CCL. A simplest model equation for 
variation of conductivity with time is 

τs
∂σ
∂t

+ σ = σ0 (4)  

Eq. (4) describes exponential approach of proton conductivity to its 
stationary shape σ0 with τs being the characteristic time of σ growth. 

It is convenient to introduce dimensionless variables 

t̃ =
t
t*
, x̃ =

x
lt
, σ̃ =

σ
σ*
, j̃ =

j
j*
, η̃ =

η
b
, ω̃ = ωt*, Z̃ =

Zσ*

lt
(5)  

where lt is the CCL thickness, b is the ORR Tafel slope, Z is the imped
ance, ω is the angular frequency of the AC signal, and the time t* and 
current density j* scales are given by 

t* =
Cdlb

i*
, j* =

σ*b
lt

(6)  

Here, Cdl is the double layer capacitance and i* is the ORR volumetric 
exchange current density. 

With Eqs. (5), Eq. (4) transforms to 

μ2
s
∂σ̃
∂̃t

+ σ̃ = σ̃0
(

j̃
)

. (7)  

Here, 

σ̃0
= 1+ β̃̃j, β̃ ≡ βj* (8)  

and 

μs =

̅̅̅̅̅̅̅̅̅
τsi*
Cdlb

√

. (9)  

To perform linearization and Fourier–transform, we substitute the 
following expansions into Eq. (4) 

σ̃ = σ̃0
+ σ̃1( ω̃

)
exp
(
iω̃̃t
)
, σ̃1≪σ̃0

j̃ = j̃
0
+ j̃

1(ω̃
)

exp
(

iω̃̃t
)
, j̃

1
≪j̃

0
,

(10)  

and subtract the static equation from the result. This leads to the linear 
algebraic equation for the perturbation amplitude σ̃1: 

iω̃μ2
s σ̃1

+ σ̃1
=

∂σ̃0

∂̃j
j̃
1
. (11)  

Here and below, the superscripts 0 and 1 mark the static variables and 
the AC perturbation amplitudes in the ω̃–space, respectively. 

Calculating the derivative ∂σ̃0
/∂̃j with Eq. (8), from Eq. (11) we get 

σ̃1
= ks̃j

1
, ks =

β̃
1 + iω̃μ2

s
. (12)  

For further references we need to relate ̃j
1 

with ∂η̃1
/∂x̃. From the Ohm’s 

law we have 

j̃
0
+ j̃

1
= −

(

σ̃0
+ σ̃1

)
∂(η̃0

+ η̃1
)

∂x̃
(13)  

Subtracting from this equation the static Ohm’s law ̃j
0
= − σ̃0∂η̃0

/∂x̃ and 
neglecting the small term σ̃1∂η̃1

/∂x̃, we get 

j̃
1
= − σ̃0∂η̃1

∂x̃
− σ̃1∂η̃0

∂x̃
= − σ̃0∂η̃1

∂x̃
+

σ̃1

σ̃0 j̃
0

(14)  

Using here Eq. (12) in the last term, we get equation for ̃j
1
, which leads 

to 

j̃
1
= −

(
σ̃0

1 − ks̃j
0/σ̃0

)
∂η̃1

∂x̃
. (15)  

With Eq. (15), Eq. (12) takes the form 

σ̃1
= −

(
ksσ̃0

1 − ks̃j
0/σ̃0

)
∂η̃1

∂x̃
(16)  

2.2. Equation for the overpotential perturbation 

With the time–dependent σ, the dimensionless equation for ORR 
overpotential [7] transforms to 

∂η̃
∂̃t

− ε2σ̃∂2η̃
∂x̃2 = − c̃expη̃ (17)  

where 

ε =

̅̅̅̅̅̅̅
σ*b
i*l2

t

√

(18)  

Obviously, the static equation for η̃0 reads 

ε2σ̃0∂2η̃0

∂x̃2 = c̃0expη̃0 (19)  

Substitution of 

Fig. 1. CCL proton conductivity vs cell current density in operating Pt/C–based 
PEMFC for the indicated stoichiometry λ of the air flow. The data have been 
obtained by fitting the impedance model (Ref. [5], Chapter 6) to experimental 
impedance spectra. The spectra have been measured at the cell temperature of 
80◦C, pressure at the anode/cathode of 150/150 kPa, relative humidity 100/ 
50%. The other experimental details can be found in [6]. 
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σ̃ = σ̃0
+ σ̃1( ω̃

)
exp
(
iω̃̃t
)
, σ̃1≪σ̃0

η̃ = η̃0( x̃
)
+ η̃1( x̃, ω̃

)
exp
(
iω̃̃t
)
, η̃1≪η̃0

,
(20)  

into Eq. (17), performing linearization of the right side and subtracting 
Eq. (19), we come to 

ε2σ̃0∂2η̃1

∂x̃2 + ε2σ̃1∂2η̃0

∂x̃2 = ẽη
0

c̃1
+
(

c̃0ẽη
0

+ iω̃
)

η̃1 (21)  

Using Eq. (19) to eliminate ∂2η̃0
/∂x̃2, Eq. (21) transforms to 

ε2σ̃0∂2η̃1

∂x̃2 +
σ̃1

σ̃0c̃0expη̃0
= ẽη

0

c̃1
+
(

c̃0ẽη
0

+ iω̃
)

η̃1 (22)  

Taking into account Eq. (16), we arrive at 

ε2σ̃0∂2η̃1

∂x̃2 −

(
ksc̃0expη̃0

1 − ks̃j
0/σ̃0

)
∂η̃1

∂x̃
= ẽη

0

c̃1
+
(

c̃0ẽη
0

+ iω̃
)

η̃1 (23)  

Eq. (23) is the general equation for the ORR overpotential perturbation 
with the account of proton conductivity transients. 

2.3. Fast oxygen transport: Impedance 

Consider for simplicity a low–current regime of cell operation. In that 

case, variation of ̃η0 with x̃ is small and using the Tafel equation ε2̃j
0
=

c̃0expη̃0, Eq. (22) further reduces to 

ε2σ̃0∂2η̃1

∂x̃2 −

(
ε2ks̃j

0

1 − ks̃j
0/σ̃0

)
∂η̃1

∂x̃
= ẽη

0

c̃1
+
(

ε2̃j
0
+ iω̃

)
η̃1 (24)  

It is advisable to consider the case of fast oxygen transport in the CCL. In 
this regime, we may set ̃c1

= 0, and Eq. (24) simplifies to 

σ̃0∂2η̃1

∂x̃2 − ϕ1
∂η̃1

∂x̃
= αη̃1

, η̃1
(

1
)

= η̃1
1,

∂η̃1

∂x̃

⃒
⃒
⃒
⃒

x̃=1
= 0, (25)  

where 

α = j̃
0
+

iω̃
ε2 , ϕ1 =

ks̃j
0

1 − ks̃j
0/σ̃0

(26)  

and the boundary conditions at the CCL/GDL interface (x̃ = 1) mean 
applied perturbation η̃1

1 and zero proton current. 
Solving Eq. (25) and calculating the CCL impedance Z̃ according to 

Z̃ =
η̃1

j̃
1

⃒
⃒
⃒
⃒
⃒

x̃=0

(27)  

where ̃j
1 

is given by Eq. (15), we get 

Z̃ =

(
1 − ks̃j

0/σ̃0
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4ασ̃0
+ ϕ2

1

√

2ασ̃0tanh
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4ασ̃0
+ ϕ2

1

√ /(

2σ̃0
))+

ks̃j
0

2ασ̃0 (28)  

3. Results and discussion 

The spectra of impedance Eq. (28) for the typical cell parameters in 
Table 1 and the relaxation time τs = 10 s are shown in Fig. 2. As can be 
seen, transient variation of σ with the cell current density leads to for
mation of the LF loop in the Nyquist spectra. The characteristic fre
quency of this loop is fs = 1/(2πτs) (Fig. 2b). Upon variation of τs in the 
range of 0.1 to 100 s, the loop amplitude decreases with the decrease in 
τs. 

Calculation of limit Z̃, Eq. (28), as ω̃→0 and further Taylor series 

expansion at small ̃j
0 

leads to the static resistivity of the CCL. At leading 
order, RCCL in the dimension form reads 

RCCL =
lt

3σ +
b
j0 −

βb
2

(29)  

Note that β has a dimension of inverse current density. The first term on 
the right side of Eq. (29) gives the resistivity of proton transport in the 
CCL, the second term represents the faradaic resistivity, and the third 
term gives the contribution of proton conductivity transients discussed 
above. Note that this contribution is negative, i.e., time dependence of σ 
reduces the differential cell resistivity. 

The inductive LF loop in experimental PEMFC spectra has long been 
discussed in literature. Following Antoine, Bultel and Durand [8], 
Makharia, Mathias and Baker [9] attributed LF loop to formation of 
intermediates in the ORR mechanism. Roy and Orazem [10] and Roy, 
Orazem and Tribollet [11] attributed the loop to side reactions in 
PEMFC, like formation of hydrogen peroxide or Pt dissolution. Setzler 
and Fuller [12] developed a physics–based model with the account of Pt 
oxidation and showed that the model qualitatively correct predicts 
formation of LF loop. Wagner and Schülze [13] reported the inductive 
loop formation upon CO poisoning of the PEMFC cathode. Pivac and 
Barbir [14] provided a detailed literature review of the effect and 
developed equivalent circuits for LF loop description. Recently, Meyer 

Table 1 
The cell parameters used in calculations.  

CCL thickness lt , cm 10⋅10− 4 

Proton conductivity σ*, S cm− 1 5⋅10− 3 

Parameter β in Eq. (3), − 1 cm2 1 
ORR Tafel slope b, V/ exp 0.03 
Double layer capacitance Cdl, F cm− 3 20 
Cell current density j0, A cm− 2 0.1 
Pressure Standard 
Cell temperature T, K 273  + 80  

Fig. 2. (a) The Nyquist spectrum of Eq. (28) for the proton conductivity 
relaxation time τs = 10 s. The other parameters are listed in Table 1. (b) The 
frequency dependence of the real and imaginary parts of the impedance in (a). 
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and Zhao [15] have shown that the LF loop forms due to variation of 
flow velocity by modern flow controllers in the EIS experiments with 
constant air flow stoichiometry. Schneider et al. [16] reported loop 
formation due to insufficient membrane humidification. 

The model above provides yet another explanation of this effect. It 
should be noted that the real experimental loop may arise due to overlap 
of several aforementioned processes. The model above leads to the LF 
loop diameter proportional to β, the slope of conductivity growth with 
the cell current density. This dependence gives the hint for experimental 
verification of the loop nature: varying external humidification it could 
be possible to organize different slopes β in Eq. (4). Comparison of LF 
loop diameters could verify the mechanism above. 

The assumptions of small variation of ORR overpotential through the 
CCL depth and of fast oxygen transport in the CCL hold if the cell current 
density is sufficiently small. For typical PEMFCs, the current density 
should be below 100 mA cm− 2. These assumptions are made above to 
derive analytical expression for the impedance, which helps to clarify 
the LF loop features (the characteristic frequency, and contribution to 
the cell resistivity). Transient CCL conductivity can, of course, be 
incorporated into the numerical impedance model. Preliminary results 
show successful fitting of measured high–current impedance spectra 
with LF loops. These results will be published elsewhere. 
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