000910639 001__ 910639
000910639 005__ 20240711113604.0
000910639 0247_ $$2doi$$a10.1088/1402-4896/ac5856
000910639 0247_ $$2ISSN$$a0031-8949
000910639 0247_ $$2ISSN$$a1402-4896
000910639 0247_ $$2Handle$$a2128/32241
000910639 0247_ $$2WOS$$aWOS:000767895500001
000910639 037__ $$aFZJ-2022-04012
000910639 082__ $$a530
000910639 1001_ $$0P:(DE-Juel1)145890$$aWauters, Tom$$b0$$eCorresponding author
000910639 245__ $$aIsotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET
000910639 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2022
000910639 3367_ $$2DRIVER$$aarticle
000910639 3367_ $$2DataCite$$aOutput Types/Journal article
000910639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667369931_31190
000910639 3367_ $$2BibTeX$$aARTICLE
000910639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910639 3367_ $$00$$2EndNote$$aJournal Article
000910639 520__ $$aA sequence of fuel recovery methods was tested in JET, equipped with the ITER-like beryllium main chamber wall and tungsten divertor, to reduce the plasma deuterium concentration to less than 1% in preparation for operation with tritium. This was also a key activity with regard to refining the clean-up strategy to be implemented at the end of the 2nd DT campaign in JET (DTE2) and to assess the tools that are envisaged to mitigate the tritium inventory build-up in ITER. The sequence began with 4 days of main chamber baking at 320 °C, followed by a further 4 days in which Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) were applied with hydrogen fuelling, still at 320 °C, followed by more ICWC while the vessel cooled gradually from 320 °C to 225 °C on the 4th day. While baking alone is very efficient at recovering fuel from the main chamber, the ICWC and GDC sessions at 320 °C still removed slightly higher amounts of fuel than found previously in isotopic changeover experiments at 200 °C in JET. Finally, GDC and ICWC are found to have similar removal efficiency per unit of discharge energy. The baking week with ICWC and GDC was followed by plasma discharges to remove deposited fuel from the divertor. Raising the inner divertor strike point up to the uppermost accessible point allowed local heating of the surfaces to at least 800 °C for the duration of this discharge configuration (typically 18 s), according to infra-red thermography measurements. In laboratory thermal desorption measurements, maintaining this temperature level for several minutes depletes thick co-deposit samples of fuel. The fuel removal by 14 diverted plasma discharges is analysed, of which 9, for 160 s in total, with raised inner strike point. The initial D content in these discharges started at the low value of 3%–5%, due to the preceding baking and conditioning sequence, and reduced further to 1%, depending on the applied configuration, thus meeting the experimental target.
000910639 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000910639 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910639 7001_ $$0P:(DE-Juel1)8998$$aMatveev, D.$$b1$$ufzj
000910639 7001_ $$0P:(DE-HGF)0$$aDouai, D.$$b2
000910639 7001_ $$0P:(DE-HGF)0$$aBanks, J.$$b3
000910639 7001_ $$0P:(DE-HGF)0$$aBuckingham, R.$$b4
000910639 7001_ $$0P:(DE-HGF)0$$aCarvalho, I. S.$$b5
000910639 7001_ $$00000-0001-8020-7682$$ade la Cal, E.$$b6
000910639 7001_ $$0P:(DE-Juel1)129994$$aDelabie, E.$$b7
000910639 7001_ $$0P:(DE-Juel1)158050$$aDittmar, T.$$b8$$eCorresponding author
000910639 7001_ $$00000-0003-0104-1616$$aGaspar, J.$$b9
000910639 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b10
000910639 7001_ $$0P:(DE-HGF)0$$aJepu, I.$$b11
000910639 7001_ $$0P:(DE-Juel1)184375$$aKarhunen, J.$$b12$$ufzj
000910639 7001_ $$0P:(DE-HGF)0$$aKnipe, S.$$b13
000910639 7001_ $$0P:(DE-HGF)0$$aMaslov, M.$$b14
000910639 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b15
000910639 7001_ $$0P:(DE-Juel1)167441$$aMonakhov, I.$$b16
000910639 7001_ $$0P:(DE-HGF)0$$aNeverov, V. S.$$b17
000910639 7001_ $$0P:(DE-HGF)0$$aNoble, C.$$b18
000910639 7001_ $$0P:(DE-HGF)0$$aPapadopoulos, G.$$b19
000910639 7001_ $$00000-0003-1333-6331$$aPawelec, E.$$b20
000910639 7001_ $$0P:(DE-HGF)0$$aRomanelli, S.$$b21
000910639 7001_ $$0P:(DE-HGF)0$$aShaw, A.$$b22
000910639 7001_ $$0P:(DE-HGF)0$$aSheikh, H.$$b23
000910639 7001_ $$00000-0002-3111-5113$$aSilburn, S.$$b24
000910639 7001_ $$00000-0002-6805-8853$$aWiddowson, A.$$b25
000910639 7001_ $$0P:(DE-HGF)0$$aAbreu, P.$$b26
000910639 7001_ $$0P:(DE-HGF)0$$aAleiferis, S.$$b27
000910639 7001_ $$0P:(DE-HGF)0$$aBernardo, J.$$b28
000910639 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b29$$eCorresponding author
000910639 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b30
000910639 7001_ $$0P:(DE-HGF)0$$aBuermans, J.$$b31
000910639 7001_ $$0P:(DE-HGF)0$$aCard, P.$$b32
000910639 7001_ $$0P:(DE-HGF)0$$aCarvalho, P.$$b33
000910639 7001_ $$0P:(DE-Juel1)156426$$aCrombe, K.$$b34
000910639 7001_ $$0P:(DE-HGF)0$$aDalley, S.$$b35
000910639 7001_ $$aDittrich, L.$$b36
000910639 7001_ $$0P:(DE-HGF)0$$aElsmore, C.$$b37
000910639 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b38$$ufzj
000910639 7001_ $$0P:(DE-HGF)0$$aHacquin, S.$$b39
000910639 7001_ $$0P:(DE-HGF)0$$aHenriques, R.$$b40
000910639 7001_ $$0P:(DE-Juel1)132145$$aHuber, V.$$b41
000910639 7001_ $$0P:(DE-HGF)0$$aJacquet, P.$$b42
000910639 7001_ $$aJiang, X.$$b43
000910639 7001_ $$0P:(DE-HGF)0$$aJones, G.$$b44
000910639 7001_ $$0P:(DE-HGF)0$$aKeeling, D.$$b45
000910639 7001_ $$0P:(DE-HGF)0$$aKinna, D.$$b46
000910639 7001_ $$0P:(DE-HGF)0$$aKirov, K.$$b47
000910639 7001_ $$0P:(DE-HGF)0$$aKovari, M.$$b48
000910639 7001_ $$0P:(DE-HGF)0$$aKowalska-Strzeciwilk, E.$$b49
000910639 7001_ $$00000-0002-5780-1584$$aKukushkin, A. B.$$b50
000910639 7001_ $$00000-0003-1301-0497$$aKumpulainen, H.$$b51
000910639 7001_ $$0P:(DE-HGF)0$$aLitherland-Smith, E.$$b52
000910639 7001_ $$0P:(DE-HGF)0$$aLomas, P.$$b53
000910639 7001_ $$0P:(DE-HGF)0$$aLoarer, T.$$b54
000910639 7001_ $$0P:(DE-HGF)0$$aLowry, C.$$b55
000910639 7001_ $$0P:(DE-HGF)0$$aManzanares, A.$$b56
000910639 7001_ $$0P:(DE-HGF)0$$aPatel, A.$$b57
000910639 7001_ $$0P:(DE-HGF)0$$aPeacock, A.$$b58
000910639 7001_ $$0P:(DE-HGF)0$$aPetersson, P.$$b59
000910639 7001_ $$0P:(DE-HGF)0$$aPetrella, N.$$b60
000910639 7001_ $$00000-0001-9455-2698$$aPitts, R. A.$$b61
000910639 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b62
000910639 7001_ $$00000-0001-9901-6296$$aRubel, M.$$b63
000910639 7001_ $$0P:(DE-HGF)0$$aSiren, P.$$b64
000910639 7001_ $$0P:(DE-HGF)0$$aSmart, T.$$b65
000910639 7001_ $$00000-0002-4815-3407$$aSolano, E. R.$$b66
000910639 7001_ $$0P:(DE-HGF)0$$aŠtancar, Ž$$b67
000910639 7001_ $$0P:(DE-HGF)0$$aVarje, J.$$b68
000910639 7001_ $$0P:(DE-HGF)0$$aWhitehead, A.$$b69
000910639 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b70
000910639 7001_ $$0P:(DE-HGF)0$$aZerbini, M.$$b71
000910639 7001_ $$0P:(DE-Juel1)172037$$aZlobinski, M.$$b72
000910639 773__ $$0PERI:(DE-600)1477351-X$$a10.1088/1402-4896/ac5856$$gVol. 97, no. 4, p. 044001 -$$n4$$p044001 -$$tPhysica scripta$$v97$$x0031-8949$$y2022
000910639 8564_ $$uhttps://juser.fz-juelich.de/record/910639/files/Wauters_2022_Phys._Scr._97_044001.pdf$$yRestricted
000910639 8564_ $$uhttps://juser.fz-juelich.de/record/910639/files/Postprint_Brez_Isotope%20removal%20experiment.pdf$$yPublished on 2022-03-11. Available in OpenAccess from 2023-03-11.
000910639 909CO $$ooai:juser.fz-juelich.de:910639$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145890$$aForschungszentrum Jülich$$b0$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8998$$aForschungszentrum Jülich$$b1$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158050$$aForschungszentrum Jülich$$b8$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b10$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184375$$aForschungszentrum Jülich$$b12$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b29$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b30$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156426$$aForschungszentrum Jülich$$b34$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b38$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132145$$aForschungszentrum Jülich$$b41$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b62$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b70$$kFZJ
000910639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172037$$aForschungszentrum Jülich$$b72$$kFZJ
000910639 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000910639 9141_ $$y2022
000910639 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910639 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910639 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-23$$wger
000910639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000910639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000910639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000910639 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000910639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000910639 920__ $$lyes
000910639 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000910639 9801_ $$aFullTexts
000910639 980__ $$ajournal
000910639 980__ $$aVDB
000910639 980__ $$aUNRESTRICTED
000910639 980__ $$aI:(DE-Juel1)IEK-4-20101013
000910639 981__ $$aI:(DE-Juel1)IFN-1-20101013