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A B S T R A C T   

Tungsten (W) erosion and edge transport are investigated for EAST L-mode discharges with different gas injection. It is found that W erosion can be suppressed or 
mitigated by Ne or D2 seeding when divertor detachment is achieved. Compared to edge D2 fueling, Ne seeding from the divertor target is favorable for full 
detachment condition and thus W erosion suppression. Increasing the upstream plasma density by edge D2 fueling can affect the divertor condition, which may lead 
to a W erosion mitigation. D2 puffing at divertor target is less effective on increasing the upstream plasma density than OMP D2 puffing, and thus it is less effective on 
reduction of W erosion rates. W gross erosion profiles with different amount of injected D2 at the divertor are reproduced by a mixed material W erosion model, 
which indicates that there exist a Li-C overlayer on the W surface of EAST divertor. Ne and D2 injection are also found to have different impact on the normalized core 
W density. For the attached divertor condition, divertor Ne seeding will increase W leakage, but a suitable D2 fueling from divertor target can strengthen the edge W 
screening. After the divertor detachment, although the W source is dramatically reduced, the W core density is kept in a high level for the Ne seeding discharges, and 
even increased for the D2 fueling discharges.   

Introduction 

Tungsten (W) impurity contamination is a key issue for long-pulse 
high-performance plasma operation in tokamaks with W plasma- 
facing materials. To reduce the W impurity level in the core plasma, it 
is important to understand the physics processes of W impurity source 
and edge transport. It has long been verified by multiple tokamaks that 
the effective sputtering yields of tungsten at the divertor have a strong 
correlation with the target electron temperature [1–3]. Gas puffing from 
the edge plasma is an effective way to manipulate the target electron 
temperature and heat flux density [4–8]. Previous experiments on DIII-D 
show that local gas puffing can suppress W erosion significantly [9,10]. 
Meanwhile, seeding impurities also has to be used as radiators for heat 
exhaust of ITER and future fusion tokamaks with W divertor [11–13], 
but they may induce additional W sputtering source due to higher 
sputtering yields by impurities. Therefore, it is important to study the 
effects of different gas injection conditions on W source and edge 
transport in current devices. 

Previous experimental results based on EAST upper W divertor 
reveal that the divertor W erosion rate is closely related to both the 
heating power and the upstream plasma density [14,15]. Due to the 

routinely lithium coating for wall conditioning in EAST, W impurity 
source is also determined by the wall condition. Real-time wall condi
tioning including lithium and boron powder injection is also found to be 
an effective way to suppress divertor W erosion [16,17]. Simulation 
results from both ERO and SOLPS indicate that the W erosion of EAST 
divertor strongly depends on the impurity fraction in background 
plasma, such as the intrinsic impurity of carbon [18–20]. 

The EAST lower divertor has been upgraded from a graphite divertor 
to a W divertor with both horizontal and vertical targets since 2021 
[21,22]. The new actively water-cooled divertor has a strong power 
handling ability, and it provides a good platform to study W impurity 
source and edge transport in an ITER-like closed divertor geometry. 
Previous edge impurity seeding experiments on EAST reveal that Ne 
seeding has a better compatibility with the core plasma performance 
than Ar due to the relatively lower radiation losses in the core region 
[23,24]. In this paper, W erosion and edge transport under different 
edge Ne and D2 gas puffing conditions with the outer strike point (OSP) 
fixed on the corner of EAST lower outer W divertor are studied. A brief 
description of the experiments is given in section 2, followed by a dis
cussion of the experimental results in section 3 and conclusions in sec
tion 4. 
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Experimental setup 

EAST is a D-shaped fully superconducting tokamak with a molyb
denum first wall and tungsten upper and lower divertors. The experi
ments shown in this manuscript were carried out based on a series of 
EAST lower single-null L-mode discharges with the outer strike point at 
the corner of the outer lower W divertor, as shown in Fig. 1. Ne gas was 
seeded into the edge plasma and compared with the D2 gas puffing 
discharges. The gas injection location is at the outer divertor target near 
the strike point or from the outer mid-plane (OMP), as illustrate in Fig. 1. 
Electron cyclotron resonance heating (ECRH) [25] and lower hybrid 
wave (LHW) heating [26] were used with a total heating power about 
3.5 MW for these discharges. 

The distribution of W source along the lower outer divertor target 
was characterized by a multichannel visible spectroscopy system 
observing WI line emission at 400.9 nm [14]. The local plasma param
eters including the electron temperature (Te) and the ion saturation 
current (Jsat) on the divertor target were measured directly by Langmuir 
probe arrays [27], which contains 16 triple Langmuir probes located on 
both the vertical and horizontal targets of the lower outer divertor. W 
impurity density in the core plasma can be obtained by the tungsten 
unresolved transition array (WUTA) [28], with the core plasma density 
and temperature distribution measured by the polarimeter- 
interferometer system (POINT) [29] and the electron cyclotron emis
sion (ECE) [30] respectively. 

Experimental results and discussion 

Gas injection from the divertor target 

Due to the strong impact on the core plasma performance by pure Ne 
seeding on EAST [31], a mixed Ne and D2 injection method is applied 
with the ratio of Ne atoms to D2 molecules of 1:1. As shown in Fig. 2, for 
discharge #103230, Ne&D2 mixed gas is injected from the outer divertor 
target from 4.5 s to 7 s. The auxiliary heating power includes PEC =

1.4 MW and PLH = 2.0 MW, and the plasma current is 500 kA. The line- 
averaged electron density and the total gas puffing amount are plotted in 
Fig. 2(a) and 2(b), with the core W density normalized by maximum 
value plotted in Fig. 2(c). Te and Jsat measured by the Langmuir probe 
near the OSP are shown in Fig. 2(d) and 2(e), with the strongest W 
erosion rate near the OSP derived from the 400.9 nm WI spectroscopy 
plotted in Fig. 2(f). All these parameters are plotted for the current 
flattop phase of the discharge from 4 s to 8 s. 

With the increase of total injected amount of Ne&D2, a fully detached 
divertor condition is finally achieved and then W erosion is well sup
pressed after achieving the divertor detachment. But before detachment, 
W erosion rate does not change much although the particle flux density 
impinging to the divertor target slightly decreases. Meanwhile, the 

Fig. 1. The EAST fist wall and magnetic equilibrium configuration of discharge 
103,243 at 5.07 s. The 400.9 nm WI spectroscopy and Langmuir probes 
covering the lower outer divertor target are also illustrated. Ne and D2 gases can 
be injected from either the outer divertor region or OMP. 

Fig. 2. Time evolution of the key parameters for discharge #103230 with 1:1 
Ne&D2 injected from the divertor target. (a) Line-averaged electron density, (b) 
total gas puffing amount, (c) the normalized core W density, (d) electron 
temperature near the OSP with r-rsep = 1.87 cm, (e) ion saturation current near 
the OSP with r-rsep = 1.87 cm, and (f) W gross erosion rate near the OSP with r- 
rsep = 1.84 cm. 
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normalized core W density increases significantly with the increase of 
Ne&D2 seeding amount, which means a weaker W edge screening. 

Pure D2 is also injected from the divertor target to investigate the 
influence on W erosion and transport, as shown in Fig. 3. The main 
parameters including auxiliary heating power and plasma current of 
discharge #103243 is the same as #103230. D2 is injected from 4.5 s to 
7.2 s until divertor detachment is achieved. Similar to the Ne seeding 
discharge, W erosion rate is significantly reduced with divertor D2 
fueling only after the onset of detachment. However, relatively higher 
gas puffing amount and upstream plasma density are needed for pure D2 
fueling to achieve the divertor detachment than that of the Ne&D2 
seeding, which demonstrates the different power dissipation ability 
between D2 and Ne. 

Before divertor detachment, a slight increase of W erosion rate is 
observed with divertor D2 fueling. A newly developed Li-C-W mixed 
material model [32] is applied to calculate the W erosion profile along 
the lower outer divertor target for different time slices before and after 
D2 fueling. The selected time slices are marked by red stars in Fig. 3, 
which are t = 4.4 s and t = 6.6 s respectively. As shown in Fig. 4, by 

taking the target plasma parameters (Te and Jsat from Langmuir probes 
and fitted by Eich function [33]), the W erosion profiles for both t = 4.4 s 
and t = 6.6 s are well reproduced. Note that a 10 Å Li-C overlayer on the 
W surface are assumed in the mixed-material W erosion model, due to 
the reason that Li and C are the most two important intrinsic impurities 
in EAST plasma and can be deposited on the W surface [32,34–36]. 
Modeling results demonstrate that the slight increase of W erosion rate 
before detachment is mainly due to the increase of the impinging par
ticle flux density caused by D2 fueling. 

Gas injection from the OMP 

OMP D2 injection is also an effective way to increase the upstream 
plasma density and thus manipulate the divertor target conditions, as 
plotted in Fig. 5. The auxiliary heating power of discharge 103,246 are 
PEC = 1.25 MW and PLH = 2.5 MW, and the plasma current is 500 kA. 
OMP D2 fueling starts from 4 s to 7 s, as shown in Fig. 5(b). The impact 
on upstream plasma density is obviously faster than that of the divertor 
gas injection cases aforementioned. Unlike D2 puffing from the divertor 
target, a decrease of W gross erosion rate is observed before the onset of 
detachment for the OMP D2 puffing discharge. W erosion mitigation is 
mainly caused by the reduction of Te on the divertor target, which has a 
strong correlation with the upstream plasma density according to the 
two-point edge plasma model [4]. Divertor detachment is achieved at 
around 5.5 s, and W erosion at the divertor target is strongly mitigated 
after the detachment. 

However, the degree of divertor detachment achieved by D2 puffing 
cases are not as deep as the Ne gas puffing case, as shown in Fig. 6. 
Owing to the strong power dissipation ability of Ne, a fully detachment 
is sustained with a mixed Ne&D2 seeding, which suppresses W erosion 
on the whole divertor target completely. Whereas for the D2 injection 
discharges, only partial detachment is achieved. Therefore, compared to 
D2 injection, Ne seeding from the divertor target is more favorable for a 
fully divertor detachment and thus W erosion suppression. 

W impurity screening and core contamination 

Ne and D2 injection also show different impact on the edge W 
screening effects. Fig. 7 is the comparison of the normalized core W 
density for Ne and D2 puffing discharges. For the Ne seeding discharge, 
an increase of the core W density is observed with a stable W source 
before the onset of divertor detachment, which means a degradation of 
edge W screening as mentioned before. However, the core W density for 
D2 puffing discharges decreases before the onset of detachment. For the 
divertor D2 puffing discharge, the W source slightly increases before 
detachment (as shown in Fig. 3), so W screening is reinforced conse
quently. While for the OMP D2 puffing discharge, W source is decreased 
consistent with the core W density before detachment as shown in Fig. 5, 
and therefore, the impact on W screening is not obvious. 

After the onset of detachment, although W source is suppressed for 
all these three discharges, the W core density is kept at a high level for 
the Ne seeding discharge and even strongly increased for the D2 puffing 
discharges. The enhancement of core W density is due to the improve
ment of particle confinement in the core plasma after the onset of 
detachment. Fig. 8 shows electron density profiles in the core plasma 
measured by POINT for time slices before and after divertor detachment 
of discharges #103230, #103243 and #103246. An increase of core 
plasma density and its gradient after the onset of detachment is observed 
which also indicates an improvement of particle confinement in the core 

Fig. 3. Time evolution of the key parameters for discharge #103243 with pure 
D2 injected from the divertor target. (a) Line-averaged electron density, (b) 
total gas puffing amount, (c) the normalized core W density, (d) electron 
temperature near the OSP with r-rsep = 1.87 cm, (e) ion saturation current near 
the OSP with r-rsep = 1.87 cm, and (f) W gross erosion rate near the OSP with r- 
rsep = 1.84 cm. The two time slices before and after D2 puffing (t = 4.4 s and t =
6.6 s, marked by red stars) are selected for W erosion modeling. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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plasma. Studies of W distribution and transport in the core plasma 
during divertor detachment needs to be done in the future. 

Conclusions 

With the newly installed EAST lower W divertor, W source and edge 
transport are experimentally investigated for different Ne&D2 gas in
jection conditions. Experimental results reveal that W erosion on the 
whole divertor target can be well suppressed or mitigated by suitable 
edge Ne or D2 injection when divertor detachment is achieved. 
Compared to D2 puffing, Ne seeding from the divertor region is favorable 
for fully detachment condition and thus W erosion suppression. D2 in
jection from both divertor target and OMP can also induce a partial 
detachment condition by strongly increase the upstream plasma density, 
and therefore mitigate the divertor W erosion. 

Ne and D2 injection show different impact on the edge W screening 

and core W contamination. For the Ne seeding discharge, edge W 
screening becomes weaker, and a core W accumulation is observed 
accordingly with Ne seeding. However, for discharges of D2 injection 
from both divertor target and OMP, a decrease of W core density is 
observed before divertor detachment. A W screening enhancement is 
obtained during the attached divertor condition due to D2 injection. 
After the divertor detachment, W core density is strongly increased for 
D2 injection discharges and still kept in a high level for the Ne injection 
discharge, in spite of that the W source from the divertor is well sup
pressed. Although impurity seeding is an effective way to reduce 
divertor heat loads, it may cause degradation of edge W screening, and 
this may lead to the core W accumulation which can dramatically affect 
the core plasma performance. The physics of edge W screening degra
dation observed in the EAST experiments remains to be understood by 
dedicated experiments and modeling in the future. 

Fig. 4. Divertor target profiles of ion saturation current, electron temperature and W erosion rate for t = 4.4 s (figure (a)-(c)) and t = 6.6 s (figure (d)-(f)) of discharge 
103243. Markers are experimental data, and red lines are fitting results in figure (a)、(b)、(d)、(e) and modeling results in figure (c)、(f). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Time evolution of the key parameters for discharge #103246 with pure 
D2 injected from OMP. (a) Line-averaged electron density, (b) total gas puffing 
amount, (c) the normalized core W density, (d) electron temperature near the 
OSP with r-rsep = 1.87 cm, (e) ion saturation current near the OSP with r-rsep =

1.87 cm, and (f) W gross erosion rate near the OSP with r-rsep = 1.84 cm. 

Fig. 6. The (a) electron temperature, (b) ion saturation current, and (c) cor
responding W erosion profiles along the outer divertor target for the detached 
divertor condition in #103230 (blue dots), # 103,243 (pink dots), and 
#103246 (green dots). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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