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Abstract We develop the impurity lattice Monte Carlo
formalism for the case of two distinguishable impurities
in a bath of polarized fermions. The majority particles are
treated as explicit degrees of freedom, while the impurities
are described by worldlines. The latter serve as localized aux-
iliary fields, which affect the majority particles. We apply the
method to non-relativistic three-dimensional systems of two
impurities and a number of majority particles where both
the impurity–impurity interaction and the impurity–majority
interaction have zero range. We consider the case of an attrac-
tive impurity–majority interaction, and we study the forma-
tion and disintegration of bound states as a function of the
impurity–impurity interaction strength. We also discuss the
potential applications of this formalism to other quantum
many-body systems.

1 Introduction

There is growing interest in the study of nuclear processes
and phenomena including hyperons, as these have impor-
tant influences on the properties of finite nuclei and infi-
nite nuclear matter [1–4]. The development of an ab ini-
tio formalism to study hypernuclear physics is an important
step along this direction. The auxiliary-field quantum Monte
Carlo (AFQMC) method is particularly well-suited to study
the properties of finite nuclei and nuclear matter. This holds in
particular for Wigner’s SU(4) symmetry [5] where the inter-
action is independent of spin and isospin. Then, the AFQMC
method becomes very powerful as it is free of the fermion
sign problem [6,7]. However, when hyperons are included in
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AFQMC simulations, the sign problem resurfaces since there
is no longer an approximate symmetry for the interactions
[8]. Therefore, hypernuclear physics requires an alternative
approach such as the so-called the impurity lattice Monte
Carlo (ILMC) method, which is the subject of this paper.

ILMC is a “hybrid” algorithm, in the sense that it com-
bines AFQMC with worldline MC simulations, and provides
a powerful means to study non-relativistic, strongly coupled
systems, such as polarons in various dimensions, or hyper-
nuclei. The basic assumption is that the minority species of
impurities, such as hyperons in a nucleus, is treated differ-
ently than the majority species of particles, which are filling
the background in a medium. In the case of hypernuclei, the
majority particles are nucleons. The ILMC method has been
introduced in Ref. [9] in the context of a Hamiltonian the-
ory of spin-up and spin-down fermions, and applied to the
intrinsically non-perturbative physics of Fermi polarons in
two dimensions in Ref. [10].

The ILMC method has proven to be successful for the case
in which only one fermion (of a given species) is immersed in
a sea of particles from one or more other species. ILMC leads
to a formalism in which only the majority species fermions
appear as explicit degrees of freedom, while the minority
fermion is represented by a worldline in Euclidean projec-
tion time. The spatial position of this worldline is updated
using Metropolis moves, while the interactions between the
majority fermions are described by auxiliary fields. The effi-
cient performance of ILMC was explicitly demonstrated in
Ref. [10] for a calculation with 10 spin-up fermions (the
sea of majority particles) and one spin-down impurity. The
first application of ILMC to the inclusion of hyperons into
Nuclear Lattice Effective Field Theory (NLEFT) simulations
[11,12,20] was performed in Ref. [13]. In that work, the
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� hyperon was considered as the minority species and rep-
resented by a worldline in Euclidean time. This � world-
line was then immersed in a medium consisting of an arbi-
trary number of nucleons N . With simple spin- and isospin-
independent hyperon-nucleon and nucleon-nucleon interac-
tions, the binding energies of the hypertriton, 4

�H/He, and
5
�He were calculated, leading to a qualitative agreement with
experiment. Most importantly, the computational effort for
ILMC was found to scale approximately linearly with the
number of nucleons. This paves the way for the calculation
of light, medium-mass and heavy hypernuclei.

Here, we extend ILMC to the case of two interacting, dis-
tinguishable impurities represented by worldlines. Besides
applications in atomic physics, this extension is necessary if
one wants to consider double-� hypernuclei within NLEFT,
see [14,15] for recent reviews. In this work, we consider two
distinguishable impurities immersed in a sea of polarized
fermions of the same species. For convenience of notation,
we refer to the two impurities as spin-up fermions (↑a and
↑b), while the majority background particles will be labeled
as spin-down fermions, ↓.

For simplicity, we take the masses of all particles to be the
same. We take the interactions between each impurity and the
background particles to be a zero-range attractive interaction
with the same strength for ↑a + ↓ and ↑b + ↓. We take
the impurity–impurity interaction ↑a + ↑b to also have zero
range, but we consider both the attractive and repulsive cases.
Our aim is to calculate the binding energies of these N -body
systems and draw some conclusions for the fate of double-�
hypernuclei from such a simplified scenario.

This paper is organized as follows: In Sect. 2, we present
the Hamiltonian used for this study. In Sect. 3, we extend the
impurity worldline formalism to the case of two impurities,
and focus mostly on the differences to the one-worldline case
developed and described in Ref. [9]. In Sect. 4, we present
our results for the binding energies of the systems made from
two impurities and an arbitrary number of background parti-
cles. In Sect. 5, we conclude by a discussion of future direc-
tions and applications of the impurity Monte Carlo method
to the problem of hypernuclei in NLEFT. In the Appendix,
we benchmark our approach by calculating the triton bind-
ing energy for an interaction that is independent of spin and
isospin.

2 Lattice Hamiltonian

We consider systems of two distinguishable impurity par-
ticles labeled a and b, interacting with a background sea
of indistinguishable spin-down fermions. For simplicity, we
assume that impurities and spin-down fermions have equal
mass m. A lattice Hamiltonian can then be constructed in the
following way. We start with the non-relativistic Hamiltonian

of the free theory,

Ĥ0 = 1

2m

∑

s=↑a ,↑b,↓

∫
d3r∇a†

s (r) ∇as (r) , (1)

in which as and a†
s represent annihilation and creation oper-

ators, and i ∈ N is the labeling index for the background
particles. The zero-range interaction between the impurities
and background particles is controlled by the coupling con-
stant CI B . This corresponds to the low-energy limit of a the-
ory in which the scattering length ascatt is large compared
to the effective range reff. In a similar fashion, we introduce
a contact interaction between the two impurities CI I . The
interaction Hamiltonian is given by

ĤI = CI I

∫
d3rρ̂↑b (r) ρ̂↑a (r)

+ CI B

∫
d3r

[
ρ̂↑a (r) ρ̂↓ (r) + ρ̂↑b (r) ρ̂↓ (r)

]
,

(2)

where ρ̂s (r) are density operators given by

ρ̂s (r) = a†
s (r) as (r) . (3)

As in all lattice calculations, the ultraviolet physics of the
zero-range interactions are regulated by the lattice spacing.
We denote the spatial lattice spacing by a, and the tempo-
ral lattice spacing (due to the Trotter decomposition of the
Euclidean time evolution) by at . We express all physical
quantities in lattice units by multiplying them with corre-
sponding powers of a, so as to form dimensionless combina-
tions. We also define the lattice spacing ratio α = at/a. The
free lattice Hamiltonian is

Ĥ0 = Ĥ↑a
0 + Ĥ↑b

0 + Ĥ↓
0 , (4)

with

Hs
0 = 1

2m

∑

n

3∑

i=1

a†
s (n)

×
[
2as (n) − as

(
n + l̂i

)
− as

(
n − l̂i

)]
, (5)

where the l̂i , i ∈ 1, 2, 3 are unit vectors in the spatial dimen-
sions. We express the various lattice interaction terms in a
compact form, as

Hs′s = Cs′s
∑

n

ρ̂s′ (n) ρ̂s (n) , (6)

where the couplings Cs′s can be tuned in such a way as to
either produce specific dimer binding energies, or scattering
lengths via Lüscher’s formula [16–18].
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3 Impurity lattice Monte Carlo: extension to two
impurities

The ILMC method for a single impurity has already been
treated in the literature [9,10,13]. We now extend the formal-
ism to systems with two impurities. As in the single impurity
case, the goal is to integrate out all impurities from the lattice
action and to reduce the explicit degrees of freedom in the
Monte Carlo simulation. We also derive the transfer matrix
formalism for two impurities in a sea of an arbitrary num-
ber of spin-down particles. This can be achieved using the
exact correspondence between the Grassmann path integral
and the normal-ordered transfer matrix formalisms [12].

We define our system in a three-dimensional periodic
cubic box of length L in the spatial directions and Lt in the
temporal direction. We denote anti-commuting Grassmann
variables by θs and θ∗

s and choose the Grassmann variables
to be periodic in the spatial directions and anti-periodic in the
temporal direction. The path integral formula for the Grass-
mann variables is

Z =
∫

⎡

⎢⎣
∏

nt ,n
s=↑a ,↑b,↓

dθs (nt , n) dθ∗
s (nt , n)

⎤

⎥⎦ e−S[θ,θ∗], (7)

where S
[
θ, θ∗] is the lattice action in terms of the Grassmann

variables, given by

S
[
θ, θ∗] =

∑

nt

{
St

[
θ, θ∗, nt

] + SH0

[
θ, θ∗, nt

]

+ SHSI

[
θ, θ∗, nt

] + SHI I

[
θ, θ∗, nt

] }
, (8)

with

St
[
θ, θ∗, nt

] =
∑

s=↑a ,↑b,↓

∑

n

[
θ∗
s

(
nt + 0̂, n

)
− θ∗

s (nt , n)
]

× θs (nt , n) , (9)

and

SH0

[
θ, θ∗, nt

] = Wh

∑

s=↑a ,↑b,↓

∑

n

3∑

i=1

θ∗
s (nt , n)

×
[

2θs(nt , n) − θs

(
nt , n + l̂i

)
− θs

(
nt , n − l̂i

) ]
,

(10)

where Wh is given by Eq. (21). For the interaction terms, we
find

SHSI

[
θ, θ∗, nt

] = α CI B

∑

n

∑

s=↑a ,↑b

θ∗
s (nt , n)θs(nt , n)

× θ∗↓(nt , n)θ↓(nt , n), (11)

and

SHI I

[
θ, θ∗, nt

] = α CI I

∑

n

θ∗↑a
(nt , n)θ↑a

(nt , n)

× θ∗↑b
(nt , n)θ↑b

(nt , n). (12)

While Eq. (7) is convenient for deriving lattice Feyn-
man rules, the transfer matrix operator formalism is more
amenable to lattice MC simulations. For a detailed derivation
of the exact relation between the Grassmann path integral for-
mula and the normal-ordered transfer matrix formalism, we
refer the reader to Refs. [11,12]. We can write the amplitude
Z as

Z = tr M̂ Lt , (13)

where M̂ is the normal-ordered transfer matrix.
We start from the occupation number basis [9]. With

χ s
nt (n) counting the occupation number on each lattice site

for any particle species, we can write any configuration as

∣∣∣χ↓
nt , χ

↑a
nt , χ↑b

nt

〉

=
∏

n

[
a†
↓ (n)

]χ
↓
nt (n) [

a†
↑a

(n)
]χ

↑a
nt (n) [

a†
↑b

(n)
]χ

↑b
nt (n)|0〉 .

(14)

Without loss of generality, we can take all of the particles
to be fermions, including the two distinguishable impurities.
Thus the occupation numbers can assume the values 0 or 1.
We shall use this property to determine the transfer matrix
elements between two successive time steps nt and nt+1 from
the lattice Grassmann functions,

〈
χ↓
nt+1

, χ↑a
nt+1

, χ↑b
nt+1

∣∣∣ M̂
∣∣∣χ↓

nt , χ
↑a
nt , χ↑b

nt

〉

=
∏

n

⎛

⎜⎝

[ −→
∂

∂θ∗↑b
(nt , n)

]χ
↑b
nt+1 (n) [ −→

∂

∂θ∗↑a
(nt , n)

]χ
↑a
nt+1 (n)

×
[ −→

∂

∂θ∗↓(nt , n)

]χ
↓
nt+1 (n)

⎞

⎟⎠ × X (n) M (nt )

×
∏

n′

⎛

⎜⎝

[ ←−
∂

∂θ↓(nt , n′)

]χ
↓
nt (n

′) [ ←−
∂

∂θ↑a (nt , n′)

]χ
↑a
nt (n′)

×
[ ←−

∂

∂θ↑b (nt , n′)

]χ
↑b
nt (n′)

⎞

⎟⎠

∣∣∣∣∣∣∣ θ↓ = θ↑a = θ↑b = 0
θ∗↓ = θ∗↑a

= θ∗↑b
= 0

,

(15)
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where the :: represent the normal ordering of operators. Here,
X (n) and M (nt ) are the Grassmann functions

X (n) =
∏

n

eθ∗↓[nt ,n]θ↓[nt ,n]eθ∗↑a [nt ,n]θ↑a [nt ,n]

× e
θ∗↑b [nt ,n]θ↑b [nt ,n]

, (16)

and

M (nt ) = exp
(−SH0

)
exp

(−SHSI

)
exp

(−SHI I

)
. (17)

The above matrix elements of the transfer matrix operator
are non-zero only if
∑

n

χ↑a
nt (n) =

∑

n

χ↑a
nt+1

(n) = 1, (18)

and
∑

n

χ↑b
nt (n) =

∑

n

χ↑b
nt+1

(n) = 1. (19)

We now treat the impurities as fixed worldlines and inte-
grate them out from the lattice action. This leads to the
“reduced” transfer matrix /M (nt ) given in Eq. (20), which
is acting on the wave functions of the majority particles only,

〈
χ↓
nt+1

, χ↑a
nt+1

, χ↑b
nt+1

∣∣∣ M̂
∣∣∣χ↓

nt , χ
↑a
nt , χ↑b

nt

〉

=
∏

n

⎛

⎜⎝

[ −→
∂

∂θ∗↓ (nt , n)

]χ
↓
nt+1 (n)

⎞

⎟⎠ X /↑/↑ (n) /M (nt )

×
∏

n′

⎛

⎜⎝

[ ←−
∂

∂θ↓ (nt , n′)

]χ
↓
nt (n

′)
⎞

⎟⎠

∣∣∣∣∣∣∣
θ↓=θ∗↓=0

,

(20)

where

X /↑/↑ =
∏

n

exp
(
θ∗↓ [nt , n] θ↓ [nt , n]

)
.

We consider the reduced transfer matrix between two succes-
sive Euclidean time steps nt and nt+1, and this corresponds
to three different cases.

The first case is when both impurities hop from lattice
sites (n, n′) to nearest neighbor sites (n ± l̂, n′ ± l̂ ′). The
amplitude for one worldline to hop to a neighboring lattice
site is

Wh = α

2m
, (21)

while the amplitude to stay on the same lattice site is given
by

Ws = 1 − 6Wh . (22)

When this is applied to Eq. (20), the reduced transfer matrix
reads

/Mn±l̂,n
n′±l̂ ′,n′ = W 2

h e
−αH↓

0 , (23)

where the upper set of indices of /M refers to the new and old
position of worldline a while the lower set of indices refers
to the positions of worldline b.

The second case results when one of the impurities (either
worldline a or worldline b) hops to some nearest neighbor
site while the other one remains stationary. The correspond-
ing transfer matrix elements for (n, n′) → (n, n′ ± l̂ ′) and
(n, n′) → (n ± l̂, n) are equivalent,

/Mn′±l̂,n′
nn = /Mnn

n′±l̂,n′ . (24)

We can then write

/Mn′±l̂,n′
nn = WsWhe

−αH↓
0 − αCI B θ∗↓(nt ,n)θ↓(nt ,n)

Ws . (25)

From this result, we find that only the worldline that does
not hop between time steps nt and nt+1 can interact with the
background particles.

The third and last case is where both worldlines remain
stationary between time steps nt and nt+1, (n, n′) → (n, n′),
and the reduced transfer matrix is

/Mn′n′
nn = W 2

s e
−αH↓

0 exp

[
−δn,n′αCI I

W 2
s

+
(

1 − αCI B
θ∗↓ (nt , n) θ↓ (nt , n)

Ws

)

×
(

1 − αCI B
θ∗↓

(
nt , n′) θ↓

(
nt , n′)

Ws

)]
. (26)

As can be seen from Eq. (26), the stationary worldlines do
interact with the background particles. If the worldlines are
occupying the same spatial lattice site between time steps
nt and nt+1, then they can also can interact with each other.
Therefore, by considering all possible configurations of the
worldlines, we obtain the reduced transfer matrix elements
to be used in our MC calculations. In Eqs. (23–26) all expres-

sions multiplied with e−αH↓
0 can be viewed as local auxiliary

fields felt by the background particles.
From the scenarios discussed above, we obtain the reduced

transfer matrix operators

/Mn±l̂,n
n′±l̂ ′,n′ = W 2

h : e−αH↓
0 :, (27)

/̂M
n′±l̂,n′
nn = WhWs : e−αH↓

0 − αCI B ρ↓(n)

Ws :, (28)
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/̂M
n′n′
nn = W 2

s : e−αH↓
0 exp

[−δn,n′αCI I

W 2
s

− α CI B ρ↓ (n)

Ws
− αCI B ρ↓

(
n′)

Ws
+ O(α2)

]
: .

(29)

These operators are only acting on the spin-down background
particles. One example configuration for two worldlines is
depicted in Fig. 1. In comparison with the one impurity case,
the evaluation of Eq. (20) gives rise to an additional term asso-
ciated with the impurity–impurity interaction term CI I . In
order to illustrate this behaviour we consider the case where
both worldlines stay on the same lattice side (n = n′). After
expanding the exponentials, the expression for the matrix
element reads

〈
χ↓
nt+1

, χ↑a
nt+1

, χ↑b
nt+1

∣∣∣ M̂
∣∣∣χ↓

nt , χ
↑a
nt , χ↑b

nt

〉

= W 2
s

∏

n

⎛

⎜⎝

[ −→
∂

∂θ∗↓ (nt , n)

]χ
↓
nt+1 (n)

⎞

⎟⎠ X /↑/↑ (n)

× :
(

1 − αH↓
0

)[
1 − αCI I

W 2
s

− 2αCI B
θ∗↓ (nt , n) θ↓ (nt , n)

Ws

]
:

Fig. 1 Illustration of a representative worldline configuration. When
the two worldlines (solid and dashed) stay at the same lattice site for
one Euclidean time step, they interact with the interaction strength CI I

×
∏

n′

⎛

⎜⎝

[ ←−
∂

∂θ↓ (nt , n′)

]χ
↓
nt (n

′)
⎞

⎟⎠

∣∣∣∣∣∣∣
θ

(∗)
↓ =0

. (30)

In contrast to the one-impurity case, the term proportional
to CI I is an interacting term that is not proportional to the
background field θ↓. It can be therefore combined with fields

coming from H↓
0 or X /↑/↑. This leads to a contribution of the

form

〈
χ↓
nt+1

, χ↑a
nt+1

, χ↑b
nt+1

∣∣∣ M̂
∣∣∣χ↓

nt , χ
↑a
nt , χ↑b

nt

〉

= W 2
s

(
Ws − α

CI I

Ws
− 2α

CI B

Ws

)
.

(31)

4 Results

In our numerical ILMC calculations, we set the spatial lattice
spacing to 1/a = 100 MeV, and the temporal lattice spacing
to 1/at = 300 MeV, and thus α = at/a = 1/3. We use
a periodic cubic lattice with length L = 10 (in units of a).
We use the average nucleon mass m = 938.92 MeV for the
mass of the fermions. The impurity–background interaction
CI B is taken to be attractive and tuned to give a natural-sized
scattering length, in this case 3 fm. This is comparable to
the hyperon-nucleon interaction scattering length, see e.g.
the recent chiral EFT work in Ref. [19]. As a check and
benchmark of our formalism, we also calculate the triton
binding energy for a Wigner SU(4) symmetric interaction
adopting the AFMC code used in Ref. [6]. For further details,
see the Appendix.

4.1 Repulsive impurity–impurity interaction

We first consider the case where impurity–impurity interac-
tion is repulsive and vary the interaction strengthCI I to inves-
tigate the formation or disintegration of N -body bound states
for N = 3, 4, 6, 8. In Fig. 2, we show the ILMC results for
a periodic box with length L = 10 lattice units. The dashed
lines in Fig. 2 represent the one- and two-dimer thresholds
at infinite volume.

We note that the N = 3 ground state lies below the one-
dimer threshold even for very repulsive CI I , suggesting that
the trimer bound state remains bound even for strongly repul-
sive impurity–impurity interactions. Meanwhile, the N = 4
ground state quickly moves to a position slightly above the
two-dimer threshold for repulsive CI I , indicating that the
ground state of the four-body system consists of two dimers.
A finite-volume analysis of the offset relative to the two-
dimer threshold would extract the properties of the dimer-
dimer interaction.
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Fig. 2 Energy for NBG = 1, 2, 4 and 6 background particles. The
dotted lines are extrapolations to infinite repulsion, while the dashed
lines represent the one- and two-dimer thresholds

Such re-configuration of the two impurity particles is
rather interesting. The two impurities are bound together
into a trimer when there is only one background particle.
But when there are two background particles, the two impu-
rities prefer to separate and form two dimers. For N = 6 and
N = 8 we find that the extra background fermions do not
provide additional binding energy. Instead, they are filling
the Fermi sea of our periodic box.

4.2 Attractive impurity–impurity interaction

In similar fashion as in the repulsive case, we perform an anal-
ysis for the attractive impurity–impurity interaction. We vary
the coupling constant CI I in order to study the appearance
of N -body states for N = 3, 4, 6, 8. The ILMC results are
shown in Fig. 3. We see that the N = 4 ground state energy
drops below the N = 3 ground state at around CI I ≈ 0.02.
In fact, CI I ≈ 0.02 is also where the N = 6 ground state
drops below the N = 4 ground state and where the N = 8
ground state drops below the N = 6 ground state. This cross-
ing of several energy levels at the same point is reminiscent
of a quantum phase transition. In this case, however, we are
considering a finite system with relatively few particles. This
rich phase structure will be explored in a future publication.
We note another recent study that considered the properties
of two heavy impurities in a Fermi bath which also found
similar bound states [21].

While the system we study here does not directly corre-
spond to double � hypernuclei, there are some interesting
parallels worth noting. The attractive �� interaction is not
strong enough to to produce a �� bound state, see e.g. Ref.
[14]. However, the attraction is sufficient to help in the bind-
ing of hypernuclei.

Fig. 3 Energy for attractive impurity impurity interaction for different
numbers of background particles NBG = 1, 2, 4 and 6

5 Discussion

We have shown, as a proof of principle, that a two-impurity
Monte Carlo approach is suitable to describe systems with
more than one impurity, immersed in a sea of majority par-
ticles. While the majority particles have no direct interac-
tions with each other, an effective interaction is mediated
by interactions with the impurities. Such a mediated inter-
action through impurities was extracted for a slightly dif-
ferent scenario in one dimension in Ref. [22]. Moreover, we
have observed the expected disappearance of complex bound
states into dimers, for a sufficiently strong and repulsive
impurity–impurity interaction. For an attractive impurity–
impurity interaction, we have observed the expected for-
mation of bound states when we increase the interaction
strength, which we expect to give rise to a rich and com-
plex phase diagram.

We recall that the scenario studied here is formulated
in terms of an impurity–impurity interaction similar to a
hyperon-hyperon interaction, which allows for a straight-
forward application to �� nuclei. In addition, it would be
worthwhile to study the emergence of few-body states in
the context of ultra-cold gases, as particle mixtures could be
treated as impurities. In such a case, the couplings can be
tuned such that one is at (or close to) unitarity, in order to
map out the universal features of such systems, see e.g. Ref.
[23].
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A Benchmark calculation

In order to benchmark our calculation, we compare our two-
impurity MC calculation with two established methods. The
first one is a three-body Lanczos code that solves the problem
iteratively (without MC simulation). The second one is the
well-established NLEFT code [6]. For this benchmark, we
switch off all additional features of the NLEFT code (such
as operator smearing and pion exchange) and use a SU(4)
symmetric two-body force. We then perform such calcula-
tions for L = 4, 5, 6 to check whether the three equivalent
formulations of the same physical problem agree. As seen in
Fig. 4, this check produces consistent results within statis-
tical errors. Note also that we undertook no computational
effort to reduce the errors at large Euclidean times. We there-
fore conclude that two-impurity Monte Carlo is well suited
to address hypernuclear problems in the future.

Fig. 4 Benchmark calculation for the two-impurity MC algorithm. The
interaction is fixed in such a way to reproduce the triton binding energy.
The red dashed lines represent the exact Lanczos calculation results,
which are used for the normalization, the blue circles the two-impurity
results and the black squares the result of the NLEFT code. The com-
parison was performed for different box sizes L = 4, 5 and 6
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