000910664 001__ 910664 000910664 005__ 20230310131349.0 000910664 0247_ $$2doi$$a10.1103/PhysRevLett.128.242501 000910664 0247_ $$2ISSN$$a0031-9007 000910664 0247_ $$2ISSN$$a1079-7114 000910664 0247_ $$2ISSN$$a1092-0145 000910664 0247_ $$2Handle$$a2128/32278 000910664 0247_ $$2pmid$$a35776463 000910664 0247_ $$2WOS$$aWOS:000820702500005 000910664 037__ $$aFZJ-2022-04037 000910664 082__ $$a530 000910664 1001_ $$0P:(DE-HGF)0$$aLu, Bing-Nan$$b0$$eCorresponding author 000910664 245__ $$aPerturbative Quantum Monte Carlo Method for Nuclear Physics 000910664 260__ $$aCollege Park, Md.$$bAPS$$c2022 000910664 3367_ $$2DRIVER$$aarticle 000910664 3367_ $$2DataCite$$aOutput Types/Journal article 000910664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667393085_26491 000910664 3367_ $$2BibTeX$$aARTICLE 000910664 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000910664 3367_ $$00$$2EndNote$$aJournal Article 000910664 500__ $$aWe gratefully acknowledge funding by NSAF (Grant No. U1930403), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the NSFC through the funds provided to the Sino-German Collaborative Research Center TRR110 “Symmetries and the Emergence of Structure in QCD” (DFG Project ID 196253076 - TRR 110, NSFC Grant No. 12070131001), the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034), Volkswagen Stiftung (Grant No. 93562), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101018170) and the U.S. Department of Energy (DE-SC0013365 and DE-SC0021152) and the Nuclear Computational Low-Energy Initiative (NUCLEI) SciDAC-4 project (DE-SC0018083) and the Scientific and Technological Research Council of Turkey (TUBITAK project no. 120F341) and the National Natural Science Foundation of China under Grants No. 12105106 and the China Postdoctoral Science Foundation under Grants No. BX20200136 and 2020M682747. 000910664 520__ $$aWhile first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry. 000910664 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000910664 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000910664 536__ $$0G:(DE-Juel1)jara0015_20200501$$aNuclear Lattice Simulations (jara0015_20200501)$$cjara0015_20200501$$fNuclear Lattice Simulations$$x2 000910664 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000910664 7001_ $$0P:(DE-HGF)0$$aLi, Ning$$b1 000910664 7001_ $$0P:(DE-HGF)0$$aElhatisari, Serdar$$b2 000910664 7001_ $$00000-0002-0892-4457$$aMa, Yuan-Zhuo$$b3 000910664 7001_ $$0P:(DE-HGF)0$$aLee, Dean$$b4 000910664 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b5 000910664 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.128.242501$$gVol. 128, no. 24, p. 242501$$n24$$p242501$$tPhysical review letters$$v128$$x0031-9007$$y2022 000910664 8564_ $$uhttps://juser.fz-juelich.de/record/910664/files/PhysRevLett.128.242501.pdf$$yOpenAccess 000910664 909CO $$ooai:juser.fz-juelich.de:910664$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000910664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b5$$kFZJ 000910664 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000910664 9141_ $$y2022 000910664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02 000910664 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000910664 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000910664 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02 000910664 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger 000910664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02 000910664 920__ $$lyes 000910664 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000910664 980__ $$ajournal 000910664 980__ $$aVDB 000910664 980__ $$aUNRESTRICTED 000910664 980__ $$aI:(DE-Juel1)IAS-4-20090406 000910664 9801_ $$aFullTexts