000910674 001__ 910674
000910674 005__ 20230123110716.0
000910674 0247_ $$2doi$$a10.1103/PhysRevA.105.062415
000910674 0247_ $$2ISSN$$a2469-9926
000910674 0247_ $$2ISSN$$a2469-9942
000910674 0247_ $$2ISSN$$a0556-2791
000910674 0247_ $$2ISSN$$a1050-2947
000910674 0247_ $$2ISSN$$a1094-1622
000910674 0247_ $$2ISSN$$a1538-4446
000910674 0247_ $$2ISSN$$a2469-9934
000910674 0247_ $$2Handle$$a2128/32291
000910674 0247_ $$2WOS$$aWOS:000812337800004
000910674 037__ $$aFZJ-2022-04047
000910674 041__ $$aEnglish
000910674 082__ $$a530
000910674 1001_ $$0P:(DE-HGF)0$$aPiskor, Tomislav$$b0
000910674 245__ $$aUsing gradient-based algorithms to determine ground-state energies on a quantum computer
000910674 260__ $$aWoodbury, NY$$bInst.$$c2022
000910674 3367_ $$2DRIVER$$aarticle
000910674 3367_ $$2DataCite$$aOutput Types/Journal article
000910674 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667394269_10164
000910674 3367_ $$2BibTeX$$aARTICLE
000910674 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910674 3367_ $$00$$2EndNote$$aJournal Article
000910674 520__ $$aVariational algorithms are promising candidates to be implemented on near-term quantum computers. In our work, we investigate the variational Hamiltonian ansatz (VHA), where a parametrized trial state of the quantum mechanical wave function is optimized to obtain the ground-state energy. In the VHA, the trial state is given by a noninteracting reference state modified by unitary rotations using generators that are part of the Hamiltonian describing the system. The lowest energy is obtained by optimizing the angles of those unitary rotations. A standard procedure to optimize the variational parameters is to use gradient-based algorithms. However, shot noise and the intrinsic noise of the quantum device affect the evaluation of the required gradients. We study how different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are affected by shot noise and the noise of the quantum computer. To this end, we simulate a simple quantum circuit, as well as the two-site and six-site Hubbard models.
000910674 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910674 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910674 7001_ $$0P:(DE-HGF)0$$aReiner, Jan-Michael$$b1
000910674 7001_ $$0P:(DE-HGF)0$$aZanker, Sebastian$$b2
000910674 7001_ $$0P:(DE-HGF)0$$aVogt, Nicolas$$b3
000910674 7001_ $$0P:(DE-HGF)0$$aMarthaler, Michael$$b4
000910674 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b5$$eCorresponding author$$ufzj
000910674 7001_ $$0P:(DE-HGF)0$$aEich, Florian G.$$b6
000910674 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.105.062415$$gVol. 105, no. 6, p. 062415$$n6$$p062415$$tPhysical review / A$$v105$$x2469-9926$$y2022
000910674 8564_ $$uhttps://juser.fz-juelich.de/record/910674/files/PhysRevA.105.062415.pdf$$yOpenAccess
000910674 909CO $$ooai:juser.fz-juelich.de:910674$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b5$$kFZJ
000910674 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910674 9141_ $$y2022
000910674 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910674 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910674 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910674 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910674 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910674 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000910674 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2022-11-23
000910674 920__ $$lyes
000910674 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
000910674 980__ $$ajournal
000910674 980__ $$aVDB
000910674 980__ $$aUNRESTRICTED
000910674 980__ $$aI:(DE-Juel1)PGI-12-20200716
000910674 9801_ $$aFullTexts