001     910674
005     20230123110716.0
024 7 _ |a 10.1103/PhysRevA.105.062415
|2 doi
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 2128/32291
|2 Handle
024 7 _ |a WOS:000812337800004
|2 WOS
037 _ _ |a FZJ-2022-04047
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Piskor, Tomislav
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Using gradient-based algorithms to determine ground-state energies on a quantum computer
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667394269_10164
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Variational algorithms are promising candidates to be implemented on near-term quantum computers. In our work, we investigate the variational Hamiltonian ansatz (VHA), where a parametrized trial state of the quantum mechanical wave function is optimized to obtain the ground-state energy. In the VHA, the trial state is given by a noninteracting reference state modified by unitary rotations using generators that are part of the Hamiltonian describing the system. The lowest energy is obtained by optimizing the angles of those unitary rotations. A standard procedure to optimize the variational parameters is to use gradient-based algorithms. However, shot noise and the intrinsic noise of the quantum device affect the evaluation of the required gradients. We study how different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are affected by shot noise and the noise of the quantum computer. To this end, we simulate a simple quantum circuit, as well as the two-site and six-site Hubbard models.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Reiner, Jan-Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zanker, Sebastian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vogt, Nicolas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Marthaler, Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wilhelm-Mauch, Frank
|0 P:(DE-Juel1)184630
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Eich, Florian G.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1103/PhysRevA.105.062415
|g Vol. 105, no. 6, p. 062415
|0 PERI:(DE-600)2844156-4
|n 6
|p 062415
|t Physical review / A
|v 105
|y 2022
|x 2469-9926
856 4 _ |u https://juser.fz-juelich.de/record/910674/files/PhysRevA.105.062415.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910674
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184630
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2022-11-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21