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Variational algorithms are promising candidates to be implemented on near-term quantum computers. In our

work, we investigate the variational Hamiltonian ansatz (VHA), where a parametrized trial state of the quantum
mechanical wave function is optimized to obtain the ground-state energy. In the VHA, the trial state is given by
a noninteracting reference state modified by unitary rotations using generators that are part of the Hamiltonian
describing the system. The lowest energy is obtained by optimizing the angles of those unitary rotations. A

standard procedure to optimize the variational parameters is to use gradient-based algorithms. However, shot
noise and the intrinsic noise of the quantum device affect the evaluation of the required gradients. We study how
different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are
affected by shot noise and the noise of the quantum computer. To this end, we simulate a simple quantum circuit,

as well as the two-site and six-site Hubbard models.
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I. INTRODUCTION

Recent advances in quantum computing hardware [1-3]
have led to an increasing interest in developing quantum
algorithms for noisy intermediate scale quantum (NISQ) com-
puters. One of the most promising applications for these
near-term quantum computers is the simulation of fermionic
systems, such as lattice systems or small molecules. The de-
termination of the ground state and ground-state energy is
one of the key aspects to gain information about the system.
Hybrid quantum-classical algorithms, such as the Variational
Quantum Eigensolver (VQE) [4] turn out to have low resource
requirements making them suitable for NISQ computers.
These algorithms determine the ground-state energy of a sys-
tem via preparing a parametrized trial state on a quantum
computer and optimizing the parameter set with a classical
optimization routine.

The definition of the trial state depends on the choice of the
VQE ansatz. One ansatz that is well suited for lattice systems
is the variational Hamiltonian ansatz (VHA) [5-7], stating
that for each term of a generic decomposition of the Hamil-
tonian a separate parameter is defined. This way, the number
of parameters, and thus the circuit depth can be reduced
compared to other VQE ansitze, such as the unitary coupled
cluster with single and double excitations (uCCSD) [8]. In
the uCCSD ansatz parameters are defined based on single and
double excitations of electrons from occupied to unoccupied
(molecular) orbitals, thus the number of parameters grows
polynomially with the system size (with the excitation level
determining the highest power of the polynomial scaling).
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By contrast, the VHA uses the structure of the Hamiltonian
to determine the variational form. Therefore, periodic lattice
Hamiltonians, which are typically characterized by a sparse
Hamiltonian with few independent coupling constants yield
an ansatz where the number of parameters does not scale with
the system size.

The VHA is inspired by an adaptation of the so-called
“adiabatic connection” from many-body perturbation theory
[9,10]. Starting from the solution (ground state) of non-
interacting electrons the state is evolved on the quantum
computer using a sequence of unitary propagators constructed
using parts of the fully interacting Hamiltonian. The vari-
ational parameters correspond to the propagation times of
each unitary operator. Having opted for the VHA to provide
the parametrized trial state, the parameter set is optimized
such that the expectation value of the interacting Hamilto-
nian is minimized. There are several approaches to determine
the optimal parameter set for a given cost function ranging
from gradient-free [11,12] to gradient-based algorithms [13],
which usually lead to faster convergence compared to the
gradient-free alternatives. In the present work we focus on
the analysis of the evaluation of gradients on NISQ com-
puters, which means that we are less concerned about the
specific gradient-based optimization algorithm. Hence, we
use a simple steepest-descent approach for the optimization,
where the parameters are updated using the gradient of the
energy directly, employing a fixed learning rate (damping of
the gradient).

The main question we address in this work is how mea-
surement statistics and noise affect the optimization of the
parameters appearing in the quantum circuit. Since we always
have to perform measurements to get the expectation value
of an observable, shot noise will always exist (even on error-
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corrected quantum devices). However, when simulating the
quantum device we can obtain the limit of an infinite number
of measurements, providing us with the ideal reference result
for the algorithm. Furthermore, due to adverse coupling of
the qubits to the environment, another source of error has to
be considered, namely the intrinsic depolarization of qubits.
However, we find that the dominant error for the noise model
chosen in our simulations stems from measurement statistics.

For the determination of the cost function’s gradient we
compare two procedures: (1) the finite-difference approxima-
tion to compute the gradients, which we also refer to as the
“numerical” method and (2) the so-called parameter-shift rule,
which we also refer to as the “analytical” method [14—18].
While calculating the gradient numerically, the outcome of the
result is more susceptible towards noise effects, such as shot
noise or depolarization effects occurring in qubits, because
there is a competition for improving the numerical gradi-
ent by reducing the finite step size to evaluate the gradient
versus resolving differences of the cost function evaluated
for two nearby values of a given parameter. To bypass this
hurdle, gradients can also be determined analytically via the
parameter-shift rule, with the hope being to show a more
resilient behavior [18] to noise effects because it relies on a
fixed finite difference. However, there is an important caveat
for using the parameter-shift rule for optimizing a VHA: Com-
pared to the numerical case, where the number of additional
circuit evaluations only grows with the number of parameters,
the number of additional circuit evaluations grows with two
times the number of parametrized gates for the parameter-
shift rule. While the number of parameters solely depends
on the ansatz, the number of parametrized gates depends on
the implementation of the trial state in the quantum circuit. In
general it has to be considered that one parameter might occur
in multiple parametrized gates (especially in case of the VHA,
see Sec. II) and thus the number of parameters might be much
smaller than the number of parametrized gates.

In the following we compare both methods for determining
the gradients, using a simple gradient-based optimization al-
gorithm, by investigating a simple one-qubit circuit and a two-
and six-site Hubbard model, mapped onto 4 and 12 qubits,
respectively. In Sec. II we first lay down the theoretical model
which we analyze in this work. We introduce the VHA, the
Hubbard Hamiltonian, describe our gradient evaluation and
parameter optimization routines, and explain our considered
noise models; we also highlight certain subtleties that arise
from the particular combination of ingredients that comprise
our theoretical model. In Sec. III we then study our model
through numerical simulation, where the results are shown
for a simple quantum circuit in Sec. IIl A and for the one-
dimensional Hubbard model in Sec. III B.

II. MODEL

In this section, we expound the theoretical model that we
analyze numerically below in Sec. III. In the following sub-
sections we explain the ingredients of our model, motivate the
different parts of the theoretical approach, and state again the
main question we investigate in this work.

We are interested in near-term applications for NISQ de-
vices. In this context, hybrid quantum-classical variational

algorithms are widely discussed as a potential candidate;
specifically for solving electronic structure problems [5,6,19].

In this work we chose to utilize the VHA as an ansatz for a
variational quantum algorithm [5]. Compared to, e.g., a VQE-
type uCCSD ansatz, where the number of parameters scales
polynomially with the system size, the VHA has the benefit
of having a constant number of parameters with respect to the
number of orbitals. Yet, in contrast to often referred hardware-
efficient ansitze [19], the VHA has a clear physical motivation
behind it being inspired by an adiabatic evolution.

Particularly for highly structured systems like the Hubbard
model, one can easily choose parametrizations that are de-
duced from physical reasoning (see below). In an earlier work
of ours, the setup of using the VHA to simulate the Hubbard
model proved to remain efficient under the influence of a
specific type of noise [6], and (with some adaptations to the
ansatz) enabled us to investigate the ground state, including
explicit symmetry breaking through external fields [7].

To optimize the VHA we focus on gradient-based op-
timizers. With the application on NISQ devices in mind,
we consider certain types of noise that make the evaluation
of gradients more challenging. Specifically, we study the
parameter-shift rule which was discussed to be more resilient
to noise [18], and compare it to the “standard” gradient cal-
culation by a finite difference method. The main question
we address is: How does the parameter-shift rule perform
under a realistic condition for a quantum simulation of an
electronic structure problem on NISQ hardware under the
influence of noise? As noise types we consider shot noise and
depolarization.

We point out that this question is particularly interesting
for the VHA, as the quantum circuits have few parameters
to optimize, but a single parameter will appear in mul-
tiple parametrized gates in the circuit, which is a subtle
but important difference to earlier works investigating the
parameter-shift rule.

Following this motivation of the model the consequent
subsections will treat the individual pieces of our model in
more detail: We first describe the VHA (Sec. IT A) and the
Hubbard Hamiltonian (Sec. II B). Afterwards, we explain the
gradient descent optimizer we use (Sec. II C) and our means
of gradient evaluation through a finite-difference method and
(more importantly) the parameter-shift rule (Sec. IID). We
continue by formalizing our considered noise models of shot
noise (Sec. IIE) and depolarization (Sec. I F). Finally, we
provide an analysis of our quantum circuits and highlight the
difference between the number of individual parameters and
parametrized gates and the connected complication for the
parameter-shift rule (Sec. I G).

A. Variational Hamiltonian ansatz

The VHA starts from a trial state given by
[y (0)) =U6) %) , (1)

with @ defining the parameter set, U (#) being a parametrized
unitary operator, which is implemented by a quantum circuit
and |¥p) an initial state usually chosen to be a single Slater
determinant of orbitals obtained from the mean-field solution.
The energy of this trial state for a system with Hamiltonian H
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can then be written as

(W (O) L1y (©0) . 2)

Minimizing the energy with respect to the parameter set leads
to the optimal energy attainable with the ansatz and the corre-
sponding parameter set @, satisfying

E@) =

E(Bop) = min E(9). 3)

According to the variational principle [20,21], the exact
ground state of the Hamiltonian Eey,c sets a lower bound for
the variationally determined energy

< E(Bopy). “)

Starting with an initial guess, 6, the parameter set is updated
iteratively, using the procedure described in Secs. IIC and
II D, to approach the optimal solution.

The explicit form of the unitary operator U (@) is con-
structed by decomposing the Hamiltonian into P separate
terms, as stated in Eq. (5a). The partial contributions to the
Hamiltonian are Hermitian operators, so we can use them as
generators for unitary rotations. Since the partial contributions
do not commute in general, the order in which the unitaries
are applied matters. In practice we repeat the application of
the unitaries R times and allow for different parameters (or
rotation angles) in each repetition [Eq. (5b)] yielding a total
number of n = RP free variational parameters

Eexacl

Ao, (52)
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B. Hamiltonian

In this work we investigate the one-dimensional (1D) Hub-
bard model, which is described by the Hamiltonian

H=T+W

=1 Z D (@l ,8i0)
+UZ: e — ) (et e, — 1), (6)
lT it G Ci )

with the first term describing nearest-neighbor hopping be-
tween sites i and i 4+ 1 and spin o, being either in the spin
up 1 or spin down | state, with hopping amplitude ¢ (kinetic
energy) and the second term describing the repulsion of two
electrons on the same site with interaction strength U. We
consider a system is at half-filling (an average of one electron
per site). In our studies we focus on the case where the kinetic
energy and the interaction have the same magnitude and use ¢
as our unit of energy, i.e., U =t = 1. Moreover, we employ
periodic boundary conditions. The Hubbard model at half
filling is a prototypical model describing a Mott insulator, i.e.,
an insulator where the fundamental gap is due to electron-
electron interaction and any (static) mean-field theory would
yield a metal (unless the symmetry is artificially broken).

Quite naturally Hamiltonian (6) can be split into two con-
tributions, i.e., the kinetic energy 7 and the interaction energy
W. For system sizes larger than two sites the hopping operator
is split further into a so-called “even” and “odd” contribution,
7; and 7:, Note that in our case 7;, 7:,, and W correspond
to the H, of Eq. (5b). Furthermore, the individual contribu-
tions to each of the three parts of the Hamiltonian, ’t ’7:,
and Y commute among each other, which implies that each
exponential can be split and reordered easily without using the
Baker-Campbell-Hausdorff formula.

C. Gradient descent optimizer

In this work we are interested in investigating how noise
affects the synthesis of gradients of the cost function [cf.
Eq. (2)]. While there are several established algorithms, such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[22-25], for gradient-based optimization, we decided to use
a very simple approach, namely a (damped) steepest-descent
optimizer, to reduce the complexity in the optimization pro-
cess and focus on the gradient. Specifically, we update a
parameter 6; according to

07 = 0F — nd,E@"), (7)

where 9y, E (6) denotes the derivative of the cost function with
respect to 6;, n is a fixed learning rate (damping) controlling
the step size towards the minimum of the cost function, and
0} is the ith parameter at iteration step t. The parameter
set at iteration T + 1 is given by the parameter set at step t
modified by the cost function’s gradient scaled by the learning
rate . Compared to other gradient-based optimizers [13], the
steepest-descent optimizer is very simplistic in its form since
it contains only one fixed hyperparameter. Since no infor-
mation beyond the gradient, such as an approximate Hessian
matrix, is used, algorithm (7) may converge slower than, for
example, the aforementioned BFGS optimizer.

D. Gradient evaluation

To determine the gradients for the optimization routine,
two possibilities will be discussed throughout this work.
These two possibilities will either be via a finite-difference
method or via the parameter-shift rule.

First, gradients can be determined numerically with a
finite-difference method in the following way:

09, E(0) ~

1
Z(E(Qla--~79i+6’~--a9n)

—E@,...,6;,...,6,)), ®)

with € defining a small but finite step by which the parameter
0; is shifted. This immediately implies that the number of ad-
ditional circuit evaluations for obtaining the gradient using the
finite-difference method corresponds to the number of param-
eters. However, this method may be more susceptible towards
noise effects, such as statistical or depolarization noise due
to the fact that the energy difference [cf. Eq. (8)] is getting
smaller, and therefore harder to resolve, if we improve the
accuracy of the gradient by making the step width € smaller.
On the other hand we determine gradients analytically
with the so-called parameter-shift rule [14]. At its core
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the parameter-shift rule uses the fact that the cost func-
tion generally is represented by a quantum circuit composed
of (parametrized) single-qubit rotations and fixed two-qubit
gates. Note, that every unitary can be represented in such a
form (e.g., using CNOT plus arbitrary single-qubit rotations as
a universal gate set [26]) and that we use such decompositions
in our simulations to implement the exponentials of the VHA
in Eq. (5b). Note also, that for the decompositions of the VHA
evolution a single parameter 6, ; will, in general, appear in
multiple rotation gates; however, for the application of the
parameter-shift rule they will need to be treated individually
to evaluate the gradient. Focusing on the dependence of the
energy on a single parameter ¢, which we assume to only
control one single-qubit gate, the energy, Eq. (2), can be
written as

E(Ql;gz,...,Qn)=A1COS(a)91 ~|—§01)+

oo+ Agcos(@b + @)+ ... +C, (9)

with amplitudes A,, phase shifts ¢,, and constant C, which
depend on all other parameters 6,, . . ., 6, (see the Appendix A
for a detailed derivation). The distance between the two eigen-
values of the generator for the single-qubit rotation is denoted
by w (for Pauli matrices we have w = 2). The main idea
of the parameter-shift rule is to consider the derivative of a
trigonometric function

dp cos(wb + ¢) = — w sin(wb + @)

2l (oo ag] o)

— cos (a)[9 - %] + <p)], (10)

which highlights that the exact derivative with respect to
the parameter 6 is obtained by taking the difference of two
quantum circuits, where the parameter is shifted by +5-,
respectively. The parameter-shift rule, as presented above,
is based on the assumption that a parameter 6; only con-
trols a single single-qubit gate (cf. the Appendix). However,
the parameter 6; can appear in more than one gate for the
VHA aAnsatz. This is due to the fact that the parameters
are defined in Eq. (5b) in reference to generators from the
electronic Hamiltonian. In transforming the electronic Hamil-
tonian into the quantum circuit several single-qubit rotations
are parametrized, in general, by the same parameter 6;. Hence
the parameter-shift rule cannot be simply applied to the pa-
rameters defined in Eq. (5b). Use of the parameter-shift rule
can be vindicated by defining a new set of parameters, u,
which assigns each parametrized single-qubit gate its own
parameter u; (j =1,2,...,m —1,m, where m > n). Then
we can compute the gradient with respect to the new set of
parameters as
’ l"LWL)

4r""’“’”>]‘ 1)

Note that the parameter r, controlling the “step width” in
principle depends on the explicit form of the unitary operator
Eq. (5b), but we can always define a linear map from the pa-
rameter set 6 to u, such that r is the same for all parametrized

T
aM]E(’l’)=r|:E</"L17"'5Mj+4_ry‘-'
T

_E(Ml’vl""]_

gates (r = % for standard Pauli rotations, see, e.g., Ref. [14]
for details).

We emphasize that the parameter-shift rule yields, in
principle, the exact gradient and not an approximation as
the finite-difference method described above. Moreover, the
parameter-shift rule is potentially more resilient towards noise
and other effects, because (in spite of being exact) it is evalu-
ated using a finite difference with a step width on the order
of the spectral width of the generator (typically a scaled
Pauli matrix). However, the number of circuit evaluations
scales with the number of parametrized gates and thus, with
increasing system size, requires more circuits than the finite-
difference method. In our work we consider a structured
ansatz, the VHA, for generating the variational quantum cir-
cuit, which requires discussing the difference between the
number of parameters, n (the number of components for 6),
and the number of parametrized gates, m (the number of
components for ). For a generic variational quantum circuit,
which aims at optimizing all single-qubit gates independently,
the number of parameters coincides trivially with the number
of parametrized gates.

E. Sheot noise

The first type of noise we consider is shot noise which is
inherent to any quantum device relying on a projective qubit
measurement; even quantum error correction will not mitigate
it. It is an important aspect when considering real applications
for variational algorithms.

Shot noise stems from the fact that we use a finite num-
ber of projective measurements to evaluate the energy as in
Eq. (2). The Hamiltonian is encoded into qubits as a linear
combination of Pauli products, hence, to calculate the ex-
pectation value of the Hamiltonian one needs to estimate the
expectation values of these Pauli products. However, the mea-
surement process on a quantum computer is through the
projective measurement of the qubits and a single measure-
ment for a Pauli product yields either —1 or 1. Only through
the statistics of many measurements an estimate of the expec-
tation value be made. While for infinitely many measurement
shots, the result will be exact, in reality the number will be
finite. Thus, in reality we will always have a residual error
due to shot noise.

Particularly for a variational algorithm the number of mea-
surements per optimization loop has to be treated as a scarce
resource since the energy has to be estimated very often to op-
timize the parameters of the circuit otherwise the total runtime
of the algorithm will increase tremendously. Therefore, con-
sidering how robust the gradient evaluation and optimization
procedure is against shot noise is highly important.

In the numerical results in Sec. III we faithfully simulate
the projective measurement process. We always state exactly
how many measurement shots were used for each simulation.

F. Depolarization noise

In this work we consider the application of a variational
algorithm, specifically on NISQ devices. To analyze this, we
include an obstacle in our simulations that one will have to
deal with on real hardware without complete quantum error
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FIG. 1. Graphical illustration of a simple two-qubit circuit with

one- and two-qubit unitary operations U and three noise gates, la-
beled by N, describing the effect of depolarization.

correction, namely decoherence. As the decoherence channel
we take depolarization noise acting on the quantum device
into account, which we simulate in the following way.

A quantum device can effectively be considered as an open
quantum system, i.e., the qubits on the quantum chip interact-
ing with the environment. We simulate the execution of the
circuits as follows: the quantum circuit is arranged in such a
way, that as many gates as possible are executed in parallel.
After that the noise gate is applied to all qubits in the circuit,
which can effectively be described as the application of Kraus
operators to all qubits. This procedure is repeated until the
measurement of observables is performed and is illustrated in
Fig. 1.

The noise channel N/, acting on a single qubit, can be
described as [27]

3
Ny =) KipK]. (12)
i=0

with p being the density matrix representing the quantum
system. The Kraus operators K; are defined as follows:

i 3.
Ry=./1- ZFI, (13a)
R r

£ = */T_a,, i€ (1,2.3), (13b)

with I' = 1 — ¢77 defining the depolarizing term and &; being
the Pauli operators. It can be easily seen that in the noiseless
case, i.e., y = 0, the depolarizing term I" vanishes and only
the Kraus operator with the identity operator 1 is left, leading
to a noiseless quantum operation A'(p) = . In the noisy case
with y > 0, not only If’o, but also the three other Kraus oper-
ators K; including the Pauli operators are taken into account,
so that the quantum operation N induces depolarization in
the system. The parameter y, determining the strength of the
noise, is estimated as the ratio of the gate time 7, and the
coherence time 7, of a qubit.

The gate time 7, represents the time it takes to perform
a given operation, for instance, the duration of a microwave
pulse for controlling superconducting qubits. In Fig. 1 the gate
time can be viewed as the width of a single gate column,
if we interpret the horizontal direction of the algorithm as
the time axis. An example for a gate operation is a qubit flip,
where a qubit prepared in the |0) state is flipped to the |1) state
after applying an X gate on that qubit. For superconducting
architectures, the usual single and two-qubit gate times range
from 5-500ns [28,29], whereas trapped-ion designs show
single-qubits gate times in the microseconds and two-qubit
gate times in the 10-100 us regime [30,31]. The depolariza-
tion time 77 determines the time it takes for an undesired

TABLE I. Number of parameters and parametrized gates for 1D
Hubbard chains with varying number of sites.

# sites M Hilbert space size ~ # parameters  # parametrized
22 gates

2 16 2 10

4 256 3 28

6 4096 3 42

8 65 536 3 56

10 1048 576 3 70

12 16 777 216 3 84

14 268 435 456 3 98

16 4294 967 296 3 112

qubit flip to occur due to the coupling of the qubit to its
environment. Hence, if we would like to perform N operations
on a qubit, we require NT, < T; or equivalently y < 1lv In
passing we note that the dephasing time 7, is limited by
the relaxation time 77 of the qubit, i.e., T, < 2-7;. While
typical coherence times have values in the order of 100 us for
superconducting qubits [28,32-34], these values are several
orders of magnitude higher for ion trap devices, which can be
several seconds [30]. Considering these numbers, the ratio y,
which characterizes the noise strength, in our simulations is
chosen within

T,
y = Fj e [1074,1072]. (14)

G. Quantum circuit analysis

In this section, we highlight the difference between the
number of parametrized gates m and the number of variational
parameters n for the VHA mentioned earlier to expose the
additional overhead for using the parameter-shift rule, i.e.,
the fact that m > n. An overview for the one-dimensional
Hubbard model is given in Table I, where we compare the
number of parameters and the number of parametrized gates
for 1D Hubbard rings of various sizes (number of sites).
Therefore a circuit was generated using a two-qubit decom-
position [35,36], consisting of one-qubit rotation gates and a
two-qubit controlled-Z gate.

Table I shows the number of parameters and parametrized
circuits for various sizes, determined by the number of sites
M in the 1D Hubbard model. In the case of M =2 with
one repetition for the ansatz made in Eq. (5b), we only have
two parameters, namely one parameter for the hopping oper-
ator and one for the interaction operator. Increasing the site
number to M = 4 or M = 6 yields one further parameter per
repetition since we now also split the hopping term (kinetic
energy) into two internally commuting contributions (labeled
“even” and “odd”). The total number of circuits to evaluate
for calculating energy and gradient with the finite-difference
method is given by the number of parameters, i.e., one circuit
for each parameter shifted by ¢, plus the circuit with no shift
applied to any parameter. Considering the two-site Hubbard
model with one repetition in the VHA, which implies two
parameters, a total number of three circuits would be required
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to evaluate the gradient and the energy. Increasing the number
of repetitions from one to two, leading to four parameters,
five circuits have to be evaluated to determine the energy and
its gradient. In general, the total number of circuit evalua-
tions required for gradient and energy determination is given
by Nig =RP+1=n+1 when using the finite-difference
method, where P defines the number of parameters and R the
number of repetitions in the VHA [cf. Eq. (5b)].

For the parameter-shift rule, the additional circuits for
evaluating the gradient is proportional to twice the number
of parametrized gates, leading to 21 circuits for the two-
site Hubbard model with one repetition. Similarly to the
finite-difference case, the number of parametrized gates scales
linearly with the number of parameters and therefore also with
the number of repetitions. In general, the number of circuits
required using the parameter-shift rule can be written as Nps =
2C(M)RP + 1 = 2m + 1, where we introduce the coefficient
C (M), which translates the number of parameters to the num-
ber of parametrized gates. Considering the data in Table I and
system sizes larger than two sites, we get C(M) = %M, which
implies that the number of additional circuits scales linearly
with the system size using the Jordan-Wigner transformation
[37] to map fermionic sites to qubits. Note that this scaling is
still superior to uCCSD, which scales quadratically at best [4].

III. NUMERICAL RESULTS

In this section, we present numerical results for a simple
quantum circuit and the 1D Hubbard model with two and six
sites. In all cases, 50 000 measurements were performed to
get the averaged result of the respective observables. Both
the finite-difference and parameter-shift algorithm were per-
formed five times to get the stochastic effect of the finite
number of measurements. The shaded areas in the upcoming
plots thus mark the worst (highest value) and the best (lowest
value) energy for each iteration step and do not represent the
standard deviations of the optimization runs. The solid lines
mark runs without any effect of shot noise, representing the
case where the number of measurements N — oo.

A. Simple circuit

To get a better understanding of the gradient descent opti-
mizer, a simple one-qubit circuit is investigated, where at first
a Hadamard gate is applied to the prepared ground state |0)
followed by a rotation Z gate [see Eq. (15a)]. After this op-
eration, a measurement of the Pauli X operator is performed,
leading to a trivial periodic function

[¥(0)) = U©) 1) = R(0)H I10)

( S )0)
(G )

E©®) = (X) = (y (@)X [¥(©)) = cos(®).

&I

(15a)
(15b)

The minimum of Eq. (15b) is attained for 8 = (1 4+ 2p)w
(p € Z) with a minimal value of Eeyyee = —1.

= 100
s :
2107t -
= E
£10-2
&) =
L ]
I 10-3 4 o .
L ] —Finite-difference, e =0.5
— 1 e Finite-difference, e=0.15
107 o v Finite-difference, e =0.02
1 = Parameter-shift
107 | | | |
0 10 20 30 40
Iteration

FIG. 2. Optimization runs using a simple gradient descent
ansatz performed with the finite-difference method compared to the
parameter-shift rule for the simple circuit and N = 50 000. The solid
lines indicate runs without shot noise, whereas the corresponding
shaded region marks five optimization runs performed with shot
noise. For all optimization runs, a learning rate of n = 0.5 is used.

1. Shot noise

Figure 2 shows optimization runs for different values of
€ for the finite-difference method, as well as runs performed
with the parameter-shift rule with N = 50000 measurement
shots. Note that in all plots, starting from Fig. 2, we use a
logarithmic scale for the energy differences shown on the y
axis. The solid lines indicate simulations without any source
of noise (N — o00) and the shaded areas with the correspond-
ing color are obtained as the envelope of five runs performed
with statistical errors (N = 50 000), i.e., the upper line marks
the maximum and the bottom line indicates the minimum
of the relative deviation from the optimal value at a given
iteration of the optimization, respectively. Focusing on the
N — oo results, it can be seen that with decreasing e the
accuracy gets better, which highlights the error introduced by
approximating the derivative using a finite difference. How-
ever, if statistical effects are included it can also be seen
that the fluctuations around the optimal curve increase with
smaller €, clearly exposing that smaller € are more prone to
statistical errors. Considering the optimization runs performed
with the parameter-shift rule it can be seen that, on the one
hand, a more accurate result is achieved for the noiseless run
(N — 00), demonstrating that the parameter-shift rule yields
the exact gradient, and on the other hand, the fluctuations
around the optimal curve are smaller compared to the finite-
difference runs with € = 0.02.

2. Shot and depolarization noise

Including the effect of depolarization noise, we observe
that the deviation from the cost function’s minimum increases.
This is most pronounced for the parameter-shift rule and small
values of € for the finite-difference method. We can attribute
this to the fact that the error introduced by using a larger
€ in the finite difference dominates the overall error. This
is depicted in Fig. 3, where for the two mentioned cases a
small shift away from the minimum can be seen, compared
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FIG. 3. Same plot as Fig. 2, but with depolarization noise, char-
acterized by the rate y = 10~ included in the simulation.

to the noiseless run in Fig. 2. Increasing the depolarization
rate further leads to a higher deviation from the minimum
for all cases, as can be seen in Figs. 4 and 5. Especially
for the case where y = 1072, the finite-difference curves
with the two smallest € and the parameter-shift curve nearly
show the same result for the cost function after 50 iteration
steps, clearly showing that the depolarization error dominates
the overall error.

B. 1D Hubbard model

Next, we study the 1D Hubbard model by performing
optimization runs with shot noise only and with shot and
depolarization noise. The Hubbard Hamiltonian is defined in
Eq. (6), where the initial state |v) is chosen as the ground-
state Slater determinant for the noninteracting system.

y=1073

= 100
2 1
(] i
2107t =
= E
102
() E
'-'-' ]
| -3 — .
L 10 ] —Finite-difference, e =0.5
— ] e Finite-difference, e=0.15
107% o v Finite-difference, e =0.02
1 = Parameter-shift
107 | | | |
0 10 20 30 40
Iteration

FIG. 4. Same plot as Fig. 3, but with a depolarization rate of y =
1073.

y=10"7

5 100
5 :
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21077
(&) 3
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1073 5 e
L j —Finite-difference, e=0.5
— 1 e Finite-difference, e=0.15
10* 5 v Finite-difference, € =0.02
1 = Parameter-shift
107 | | i I
0 10 20 30 40
Iteration

FIG. 5. Same plot as Fig. 3, but with a depolarization rate of y =
1072

C. Results for two sites

For the two-site Hubbard model we decompose the Hamil-
tonian simply into kinetic energy and the interaction energy.
Thus, the trial state for the two-site Hubbard model is given as

1 (0)) = TV [y, (16)

where we only use one repetition of the unitaries since this
parametrization already encompasses the exact ground state
for the two-site Hubbard model. As in the previous example
the parameter set @ was determined with the gradient-descent
method explained in Sec. II C. The exact analytical result for
the two-site Hubbard model [38] with Eq. (16) as the trial state
has been taken as the reference value Eexact.

1. Shot noise

First, optimization runs including only shot noise were
performed, where the number of measurement shots was set
to N =50000. As in the previous case, the solid lines in
Fig. 6 show runs without shot noise, corresponding to the
limit N — oo. The shaded areas represent the maximum and
minimum of five optimization runs performed with shot noise,
respectively. From the graph it can be seen that the shaded
region for € = 0.5 is vanishingly small at the scale of the plot.
Starting around iteration step 10 it can be observed, at the
scale of the plot, that the fluctuations of the shaded regions
increase with smaller €. The more accurate the gradients are in
principle, the more relevant becomes the fact that, in practice,
we always perform a finite amount of measurements. Figure 6
shows that the energy deviation exhibits a minimum for gradi-
ents obtained via finite difference, which can be attributed to
the fact that the approximate derivatives do not even, in prin-
ciple, correspond to the true derivatives of the cost function.
This has to be contrasted with the energy deviation obtained
by using the parameter-shift rule to synthesize the gradients
for the optimization procedure. Here, the gradients are, in
principle, (N — 00) exact and the only error stems from the
finite accuracy due to a finite number of measurements for the
gradient. However, our results show that, for a fixed number of
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FIG. 6. Optimization runs using a simple gradient descent
Ansatz performed with the finite-difference method compared to the
parameter-shift rule for the two-site Hubbard model and N = 50 000.
The solid lines indicate runs without shot noise, whereas the corre-
sponding shaded region marks five optimization runs performed with
shot noise. For all optimization runs, a learning rate of n = 0.1 is
used.

measurements (N = 50 000), the intrinsic error in calculating
the gradients via finite difference using € = 0.05 is smaller
than the statistical error due to the finite number of measure-
ments. Considering the measurement overhead (cf. Table I and
Sec. I1 G) in synthesizing the gradients via the parameter-shift
rule favors the finite-difference gradients.

2. Shot and depolarization noise

By adding depolarization noise with a rate of y = 10~ to
the previous simulations it can be seen that there are no sig-
nificant differences for € = 0.5 and € = 0.2, except a minor
increase in the deviation from the exact energy, as shown in
Fig. 7. However, there is a larger offset for the parameter-shift
run. For example, around the 20th iteration step, the N — oo

y=10"1

o 100
< E
] i
2107t -
= E
102
(&) E
L §
I 10-3 - — ;
W J —Finite-difference, e=0.5 NS
— 1 e Finite-difference, e=0.2
107 o v Finite-difference, € =0.05
i1 = Parameter-shift
107> | | | |
0 5 10 15 20
Iteration

FIG. 7. Same as Fig. 6, but now including depolarization noise,
characterized by the rate y = 107*, in the simulations.

FIG. 8. Optimization runs using a simple gradient descent
ansatz performed with the finite-difference method compared to the
parameter-shift rule for the six-site Hubbard model and N = 50 000.
The solid lines indicate runs without shot noise, whereas the corre-
sponding shaded region marks five optimization runs performed with
shot noise. For all optimization runs, a learning rate of n = 0.03 is
used.

parameter-shift curve flattens out. As in the previous case,
parameter-shift simulations show a similar behavior as the
finite-difference runs with small €.

D. Results for six sites

In contrast to the two-site Hubbard model, the number of
repetitions has been set to two for the six-site Hubbard model,
leading to a trial state given as

|w(0)> — ei@@'ﬁ,eies'reei@;;WeiQ_;T,eiGz'neiO]W |1,lf0> , (17)

with 7; and 77, defined in Sec. I B.

By increasing the number of repetitions and thus the num-
ber of parameters in the ansatz, the variationally determined
energy is closer to the true ground-state energy of the system.
Note that we use the optimal energy achievable with the given
ansatz (17) as the reference energy and denote it as Ecxaet. Due
to the system size, runs with depolarization noise were not
performed.

Shot noise

For the six-site Hubbard model we perform optimization
runs for three different choices of € and the parameter-shift
rule with N = 50 000. Taking a look at the solid lines in Fig. 8,
representing noiseless runs, it can be seen that with decreasing
€ the energy accuracy improves, which could also be observed
in the two previous cases. Taking shot noise into account,
some minor fluctuations around the optimal curve for ¢ = 0.1
can be spotted. However, these fluctuations increase with de-
creasing €, besides that an offset seems to occur, especially for
€ = 0.01. While the noiseless run suggests an energy accuracy
in the order of 1072 after 50 iterations steps with the gradient-
descent optimizer, this value roughly increases by an order of
magnitude for the noisy runs.
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The noiseless parameter-shift run shows a worse accuracy
in energy after the first 50 iterations, however, it shows better
results compared to the finite-difference method when shot
noise is included. Fluctuations occur only around the noiseless
run, whereas no offset, as in the case of € = 0.01 performed
with the finite-difference method can be observed and thus
showing an overall better performance compared to its nu-
merical counterpart. It has to be emphasized that the total
number of circuits is considerably higher for the parameter-
shift rule (namely a factor of 24) for this particular system
and consequently requires a lot more time to finish the 50 it-
erations compared to the finite-difference method. Therefore,
a compromise between runtime and accuracy in energy is a
plausible conclusion. Having a slightly worse accuracy but
therefore requiring a smaller number of additional circuits,
one might choose the finite-difference method with € = 0.05.

IV. CONCLUSION

In this work, two possibilities for gradient determination
were investigated and tested on a simple toy model and the 1D
Hubbard model using the VHA and a simple gradient-descent
algorithm for parameter optimization.

On the one hand, gradients were determined numerically
with a simple finite-difference method, where the difference
between the obtained and exact minimum of the cost function
for noiseless runs gets smaller with decreasing step sizes €.
The number of circuit evaluations scales only with the number
of parameters defined in the parameter set and thus shows a
fast runtime compared to the parameter-shift method.

On the other hand, analytical gradients, determined with
the parameter-shift rule, lead to more accurate results and a
more resilient behavior towards statistical noise. Especially in
the case of the six-site Hubbard model, a better accuracy can
be achieved with the parameter-shift rule when simulating the
system taking into account shot noise. However, a major draw-
back of the parameter-shift rule, applied to the optimization
of a VHA circuit, is its scaling. Since the VHA does not only
scale with the number of parameters but also with the system
size (which affects the number of parametrized gates), the
number of required measurements increases linearly with the
system size as detailed in Sec. II G. For example, in the six-site
case the number of circuit evaluations is almost two orders of
magnitude higher for the parameter-shift method compared
to the numerical counterpart. Thus, a compromise between
runtime and accuracy can be made for the finite-difference
method, where the step size € is chosen optimally to avoid
statistical noise and provide the required accuracy. The obvi-
ous downside of this approach is that this optimal step width
has to be determined and in general depends on the number of
measurements and other hyperparameters of the optimization
algorithm. Taking a look at the simple toy model and the
two-site Hubbard model it can be concluded that the finite-
difference method is the method of choice when weighing
both runtime and accuracy. Even with shot and depolarization
noise for both cases, there is no substantial difference between
optimization runs performed with the finite-difference method
choosing small step sizes € and the parameter-shift rule.

We emphasize that the results presented in this work apply
to the generic situation where the trial state is constructed with

the goal of reducing the number of parameters optimized in
the classical optimization loop of a quantum-classical hybrid
optimization procedure, which leads to the important differ-
ence of number of parameters and number of parametrized
gates when analyzing the measurement costs when consid-
ering the parameter-shift rule. One motivation for reducing
the number of parameters in the trial state is given by the
fact that the so-called Barren plateaus [39,40] hamper the
optimization of functions defined in high-dimensional spaces
using gradient-based algorithms. However, the trigonometric
building blocks of any quantum circuit, highlighted in the
discussion of the parameter-shift rule in Sec. II D, suggests to
use alternative (gradient-free) optimization algorithms [41].

We stress, however, that our conclusions do not apply to
generic variational quantum circuits, which recently gained
considerable attention in the context of quantum machine
learning [42—45]. These generic quantum circuits are directly
composed using a universal gate set, e.g., CNOT and arbi-
trary single qubit rotations [26], so the distinction of number
of parameters and number of parametrized gates does not
apply (all parametrized gates are treated as independent, so
the number of parametrized gates corresponds trivially to the
number of variational parameters). The additional structure
imposed by simulating fermions via the fermion-qubit map-
ping (Jordan-Wigner transformation etc.) and using parts of
the Hamiltonian to generate the variational unitaries is respon-
sible for the overhead of the parameter-shift rule, compared to
the finite-difference method, in our studies.

Finally, this suggests another possibility to generate the
trial state, i.e., using the VHA to generate the circuit, but
optimizing each parametrized gate individually in the opti-
mization procedure. An interesting question for future studies
is to investigate whether treating each parametrized gate in-
dependently considerably improves the minimal achievable
energy compared to the standard VHA.
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APPENDIX: DERIVATION OF THE
PARAMETER-SHIFT RULE

In this Appendix we present an explicit derivation of
Eq. (9). We start by choosing a specific one-qubit rotation Ry,
to decompose the parametrized unitary quantum circuit into

U6)=VRyW, (A1)

where V and W are unitary rotations parametrized by all
angles 0; except for the angle 6;, which only parametrizes
the selected single-qubit gate. The single-qubit rotation Iégi is
explicitly given by

Ry, = 7" = cos(0;)1 — isin(d;)n - o, (A2)

where n is a unit vector defining the rotation axis (e.g., Carte-
sian unit vectors would result in rotations around the x, y, or z
axis), 6; provides the rotation angle, and o denotes the vector
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of elementary Pauli matrices. Note that the Pauli matrices are,
in principle, also labeled by the qubit index on which they act,
which here is suppressed to keep the notation concise.

The cost function (2) can be rewritten as

E@®) =Y (% U0)'0,06) o),

m

(A3)

highlighting that the energy is synthesized by measuring
several Hermitian operators O,,. Defining |V) = W |1) and
0, = V70,V asingle term of the sum (A3) is given by

En = (V| R} 0, Ry, |W) . (A4)

Using Eq. (A2) this leads to
E,, = (¥|[cos(6)1 + isin(0;)n - 010/,
X [cos(6;)1 — isin(6;)n - o] |¥)

= cos?(6,) (| 0!, |W)
+ sin(6;) cos(6;) (¥l i[n - &, O, |W)
+ sin?(6) (¥|n-60\n -0 |V¥),

where all three expectation values are given in terms of Hermi-
tian operators. By virtue of standard trigonometric identities
this can be expressed as

E, = A, cos(20; + §0m) + Cor. (AS)

We stress that A, ¢,, and C, depend on all angles 6;
with j # i since our initial assumption stated that 6; does
only appear in the explicitly selected single-qubit gate.
The generalization to Pauli matrices scaled by a factor
s can be obtained by replacing 6; — s6;. Defining w =
2s and summing all constant contributions C, leads to
Eq. (9).
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