000910686 001__ 910686
000910686 005__ 20230228121558.0
000910686 0247_ $$2doi$$a10.3390/metabo12070584
000910686 0247_ $$2Handle$$a2128/33805
000910686 0247_ $$2pmid$$a35888710
000910686 0247_ $$2WOS$$aWOS:000831792900001
000910686 037__ $$aFZJ-2022-04058
000910686 082__ $$a540
000910686 1001_ $$0P:(DE-Juel1)192348$$aHoffmann, Nils$$b0$$eCorresponding author
000910686 245__ $$aA Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics
000910686 260__ $$aBasel$$bMDPI$$c2022
000910686 3367_ $$2DRIVER$$aarticle
000910686 3367_ $$2DataCite$$aOutput Types/Journal article
000910686 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675058611_23439
000910686 3367_ $$2BibTeX$$aARTICLE
000910686 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910686 3367_ $$00$$2EndNote$$aJournal Article
000910686 520__ $$aMass spectrometry is a widely used technology to identify and quantify biomolecules such as lipids, metabolites and proteins necessary for biomedical research. In this study, we catalogued freely available software tools, libraries, databases, repositories and resources that support lipidomics data analysis and determined the scope of currently used analytical technologies. Because of the tremendous importance of data interoperability, we assessed the support of standardized data formats in mass spectrometric (MS)-based lipidomics workflows. We included tools in our comparison that support targeted as well as untargeted analysis using direct infusion/shotgun (DI-MS), liquid chromatography−mass spectrometry, ion mobility or MS imaging approaches on MS1 and potentially higher MS levels. As a result, we determined that the Human Proteome Organization-Proteomics Standards Initiative standard data formats, mzML and mzTab-M, are already supported by a substantial number of recent software tools. We further discuss how mzTab-M can serve as a bridge between data acquisition and lipid bioinformatics tools for interpretation, capturing their output and transmitting rich annotated data for downstream processing. However, we identified several challenges of currently available tools and standards. Potential areas for improvement were: adaptation of common nomenclature and standardized reporting to enable high throughput lipidomics and improve its data handling. Finally, we suggest specific areas where tools and repositories need to improve to become FAIRer.
000910686 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910686 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910686 7001_ $$00000-0002-1767-2343$$aMayer, Gerhard$$b1
000910686 7001_ $$0P:(DE-HGF)0$$aHas, Canan$$b2
000910686 7001_ $$0P:(DE-HGF)0$$aKopczynski, Dominik$$b3
000910686 7001_ $$00000-0002-1239-9261$$aAl Machot, Fadi$$b4
000910686 7001_ $$00000-0002-1379-9451$$aSchwudke, Dominik$$b5
000910686 7001_ $$0P:(DE-HGF)0$$aAhrends, Robert$$b6
000910686 7001_ $$00000-0002-3313-8845$$aMarcus, Katrin$$b7
000910686 7001_ $$aEisenacher, Martin$$b8
000910686 7001_ $$00000-0003-0737-1114$$aTurewicz, Michael$$b9
000910686 773__ $$0PERI:(DE-600)2662251-8$$a10.3390/metabo12070584$$gVol. 12, no. 7, p. 584 -$$n7$$p584 -$$tMetabolites$$v12$$x2218-1989$$y2022
000910686 8564_ $$uhttps://juser.fz-juelich.de/record/910686/files/metabolites-12-00584-v5.pdf$$yOpenAccess
000910686 909CO $$ooai:juser.fz-juelich.de:910686$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192348$$aForschungszentrum Jülich$$b0$$kFZJ
000910686 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910686 9141_ $$y2022
000910686 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000910686 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910686 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETABOLITES : 2019$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910686 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000910686 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000910686 9201_ $$0I:(DE-Juel1)IBG-5-20220217$$kIBG-5$$lComputergestütze Metagenomik$$x0
000910686 9801_ $$aFullTexts
000910686 980__ $$ajournal
000910686 980__ $$aVDB
000910686 980__ $$aUNRESTRICTED
000910686 980__ $$aI:(DE-Juel1)IBG-5-20220217