001     910689
005     20240711085643.0
024 7 _ |a 10.1002/aenm.202103939
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/33940
|2 Handle
024 7 _ |a WOS:000782775200001
|2 WOS
037 _ _ |a FZJ-2022-04061
082 _ _ |a 050
100 1 _ |a Voronina, Natalia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hysteresis‐Suppressed Reversible Oxygen‐Redox Cathodes for Sodium‐Ion Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677053401_8709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxygen-redox-based cathode materials for sodium-ion batteries (SIBs) have attracted considerable attention in recent years owing to the possibility of delivering additional capacity in the high-voltage region. However, they still suffer from not only fast capacity fading but also poor rate capability. Herein, P2-Na0.75[Li0.15Ni0.15Mn0.7]O2 is introduced, an oxygen-redox-based layered oxide cathode material for SIBs. The effect of Ni doping on the electrochemical performance is investigated by comparison with Ni-free P2-Na0.67[Li0.22Mn0.78]O2. The Na0.75[Li0.15Ni0.15Mn0.7]O2 delivers a specific capacity of ≈160 mAh g−1 in the voltage region of 1.5–4.6 V at 0.1 C in Na cells. Combined experiments (galvanostatic cycling, neutron powder diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance (7Li NMR)) and theoretical studies (density functional theory calculations) confirm that Ni substitution not only increases the operating voltage and decreases voltage hysteresis but also improves the cycling stability by reducing Li migration from transition metal to Na layers. This research demonstrates the effect of Li and Ni co-doping in P2-type layered materials and suggests a new strategy of using Mn-rich cathode materials via oxygen redox with optimization of doping elements for SIBs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Shin, Min-Young
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kim, Hee-Jae
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yaqoob, Najma
|0 P:(DE-Juel1)164884
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a Song, Seok Hyun
|b 5
700 1 _ |a Kim, Hyungsub
|b 6
700 1 _ |a Lim, Hee-Dae
|b 7
700 1 _ |a Jung, Hun-Gi
|b 8
700 1 _ |a Kim, Younghak
|b 9
700 1 _ |a Lee, Han-Koo
|b 10
700 1 _ |a Lee, Kug-Seung
|b 11
700 1 _ |a Yazawa, Koji
|b 12
700 1 _ |a Gotoh, Kazuma
|b 13
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 14
|e Corresponding author
700 1 _ |a Myung, Seung-Taek
|0 0000-0001-6888-5376
|b 15
|e Corresponding author
773 _ _ |a 10.1002/aenm.202103939
|g Vol. 12, no. 21, p. 2103939 -
|0 PERI:(DE-600)2594556-7
|n 21
|p 2103939 -
|t Advanced energy materials
|v 12
|y 2022
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/910689/files/Advanced%20Energy%20Materials%20-%202022%20-%20Voronina%20-%20Hysteresis%E2%80%90Suppressed%20Reversible%20Oxygen%E2%80%90Redox%20Cathodes%20for%20Sodium%E2%80%90Ion.pdf
|y Restricted
856 4 _ |y Published on 2022-04-16. Available in OpenAccess from 2023-04-16.
|u https://juser.fz-juelich.de/record/910689/files/AEM.pdf
909 C O |o oai:juser.fz-juelich.de:910689
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21