000910690 001__ 910690
000910690 005__ 20240711085643.0
000910690 0247_ $$2doi$$a10.1007/s11581-022-04536-0
000910690 0247_ $$2ISSN$$a0947-7047
000910690 0247_ $$2ISSN$$a1862-0760
000910690 0247_ $$2Handle$$a2128/32864
000910690 0247_ $$2WOS$$aWOS:000788507700002
000910690 037__ $$aFZJ-2022-04062
000910690 082__ $$a530
000910690 1001_ $$00000-0002-0302-0969$$aMalkowski, Thomas F.$$b0
000910690 245__ $$aDigestion processes and elemental analysis of oxide and sulfide solid electrolytes
000910690 260__ $$aHeidelberg$$bSpringer$$c2022
000910690 3367_ $$2DRIVER$$aarticle
000910690 3367_ $$2DataCite$$aOutput Types/Journal article
000910690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669704757_12116
000910690 3367_ $$2BibTeX$$aARTICLE
000910690 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910690 3367_ $$00$$2EndNote$$aJournal Article
000910690 520__ $$aDetailed elemental analysis is essential for a successful development and optimization of material systems and synthesis methods. This is especially relevant for Li- and Na-containing compounds, found in state-of-the-art and next-generation battery systems. Their materials’ properties and thus the final device performance strongly depend on the crystal structure, the stoichiometry, and defect chemistry, e.g., influencing charge carrier concentration and activation energies for vacancy transport. However, a detailed quantitative analysis of light elements in a heavy matrix, featuring a broad range of solubilities and vapor pressures, is often difficult and associated with large uncertainties and thus neglected in favor of just reporting the stoichiometry as “weighed in.” In this work, we report several approaches to digest and dissolve various oxide and sulfide-based materials, used in next-generation Li batteries, for elemental analysis via optical emission spectroscopy. These include the most common solid electrolytes Li-La-Ti–O, a perovskite material (LLTO), and Li-La-Zr-O which has garnet structure (LLZO). Additionally, a facile thermal digestion process is reported for a surrogate sulfide solid electrolyte (Na2S). The digestion procedures reported here are suitable for almost any laboratory environment and, when applied, will improve understanding of the synthesis-structure–property correlations needed to advanced batteries with all solid-state configurations.
000910690 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000910690 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910690 7001_ $$00000-0001-7157-4712$$aBoeding, Ethan D.$$b1
000910690 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b2
000910690 7001_ $$0P:(DE-Juel1)140546$$aWettengl, Nadine$$b3$$ufzj
000910690 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
000910690 7001_ $$00000-0002-5186-4461$$aVeith, Gabriel M.$$b5$$eCorresponding author
000910690 773__ $$0PERI:(DE-600)2226746-3$$a10.1007/s11581-022-04536-0$$gVol. 28, no. 7, p. 3223 - 3231$$n7$$p3223 - 3231$$tIonics$$v28$$x0947-7047$$y2022
000910690 8564_ $$uhttps://juser.fz-juelich.de/record/910690/files/ICP%20Paper%20_preprint.pdf$$yPublished on 2022-04-28. Available in OpenAccess from 2023-04-28.
000910690 8564_ $$uhttps://juser.fz-juelich.de/record/910690/files/s11581-022-04536-0.pdf$$yRestricted
000910690 909CO $$ooai:juser.fz-juelich.de:910690$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b2$$kFZJ
000910690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140546$$aForschungszentrum Jülich$$b3$$kFZJ
000910690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b4$$kFZJ
000910690 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000910690 9141_ $$y2022
000910690 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910690 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910690 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger
000910690 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910690 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIONICS : 2021$$d2022-11-15
000910690 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000910690 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000910690 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000910690 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000910690 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000910690 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000910690 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000910690 9801_ $$aFullTexts
000910690 980__ $$ajournal
000910690 980__ $$aVDB
000910690 980__ $$aUNRESTRICTED
000910690 980__ $$aI:(DE-Juel1)IEK-1-20101013
000910690 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000910690 981__ $$aI:(DE-Juel1)IMD-2-20101013