001     910690
005     20240711085643.0
024 7 _ |a 10.1007/s11581-022-04536-0
|2 doi
024 7 _ |a 0947-7047
|2 ISSN
024 7 _ |a 1862-0760
|2 ISSN
024 7 _ |a 2128/32864
|2 Handle
024 7 _ |a WOS:000788507700002
|2 WOS
037 _ _ |a FZJ-2022-04062
082 _ _ |a 530
100 1 _ |a Malkowski, Thomas F.
|0 0000-0002-0302-0969
|b 0
245 _ _ |a Digestion processes and elemental analysis of oxide and sulfide solid electrolytes
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669704757_12116
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Detailed elemental analysis is essential for a successful development and optimization of material systems and synthesis methods. This is especially relevant for Li- and Na-containing compounds, found in state-of-the-art and next-generation battery systems. Their materials’ properties and thus the final device performance strongly depend on the crystal structure, the stoichiometry, and defect chemistry, e.g., influencing charge carrier concentration and activation energies for vacancy transport. However, a detailed quantitative analysis of light elements in a heavy matrix, featuring a broad range of solubilities and vapor pressures, is often difficult and associated with large uncertainties and thus neglected in favor of just reporting the stoichiometry as “weighed in.” In this work, we report several approaches to digest and dissolve various oxide and sulfide-based materials, used in next-generation Li batteries, for elemental analysis via optical emission spectroscopy. These include the most common solid electrolytes Li-La-Ti–O, a perovskite material (LLTO), and Li-La-Zr-O which has garnet structure (LLZO). Additionally, a facile thermal digestion process is reported for a surrogate sulfide solid electrolyte (Na2S). The digestion procedures reported here are suitable for almost any laboratory environment and, when applied, will improve understanding of the synthesis-structure–property correlations needed to advanced batteries with all solid-state configurations.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Boeding, Ethan D.
|0 0000-0001-7157-4712
|b 1
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 2
700 1 _ |a Wettengl, Nadine
|0 P:(DE-Juel1)140546
|b 3
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 4
700 1 _ |a Veith, Gabriel M.
|0 0000-0002-5186-4461
|b 5
|e Corresponding author
773 _ _ |a 10.1007/s11581-022-04536-0
|g Vol. 28, no. 7, p. 3223 - 3231
|0 PERI:(DE-600)2226746-3
|n 7
|p 3223 - 3231
|t Ionics
|v 28
|y 2022
|x 0947-7047
856 4 _ |y Published on 2022-04-28. Available in OpenAccess from 2023-04-28.
|u https://juser.fz-juelich.de/record/910690/files/ICP%20Paper%20_preprint.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/910690/files/s11581-022-04536-0.pdf
909 C O |o oai:juser.fz-juelich.de:910690
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140546
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IONICS : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21