000910693 001__ 910693
000910693 005__ 20240708132800.0
000910693 0247_ $$2doi$$a10.1117/12.2609537
000910693 0247_ $$2WOS$$aWOS:000831668100019
000910693 037__ $$aFZJ-2022-04065
000910693 082__ $$a620
000910693 1001_ $$0P:(DE-HGF)0$$aMarzban, Bahareh$$b0
000910693 1112_ $$aSilicon Photonics XVII$$cSan Francisco$$d2022-01-22 - 2022-02-28$$wUnited States
000910693 245__ $$aModeling and design of an electrically pumped SiGeSn microring laser
000910693 260__ $$aBoca Raton, Fla.$$c2022
000910693 3367_ $$2DRIVER$$aarticle
000910693 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000910693 3367_ $$2DataCite$$aOutput Types/Journal article
000910693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674463426_23242
000910693 3367_ $$2BibTeX$$aARTICLE
000910693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910693 3367_ $$00$$2EndNote$$aJournal Article
000910693 520__ $$aWe present a suspended SiGeSn microring laser design that enables strain relaxation of the material layer stack, electrical pumping and adequate heat sinking. Using both strain and composition as two degrees of freedom to engineer the band structure, a direct bandgap is obtained in the gain material of a double heterostructure layer stack, and the L- to Γ-valley energy difference increased to 78 meV, by 66% compared to a non-underetched structure. The temperature dependent current threshold is modeled for the designed device and determined to be 18 kA/cm2 at 50 K. The fabrication process is outlined and first experimental electroluminescence results indicating the effectiveness of our approach are reported. At the time this proceedings paper is being submitted, electrically pumped lasing has also been achieved with a similar structure, with results that will be reported in a future publication.
000910693 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910693 588__ $$aDataset connected to CrossRef Conference
000910693 7001_ $$0P:(DE-HGF)0$$aSeidel, Lukas$$b1
000910693 7001_ $$0P:(DE-Juel1)180877$$aKiyek, Vivien$$b2$$ufzj
000910693 7001_ $$0P:(DE-Juel1)186980$$aLiu, Teren$$b3$$ufzj
000910693 7001_ $$0P:(DE-HGF)0$$aZöllner, Marvin$$b4
000910693 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b5
000910693 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b6
000910693 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b7$$ufzj
000910693 7001_ $$0P:(DE-HGF)0$$aSchulze, Jörg$$b8
000910693 7001_ $$0P:(DE-HGF)0$$aOehme, Michael$$b9
000910693 7001_ $$0P:(DE-HGF)0$$aWitzens, Jeremy$$b10
000910693 7001_ $$0P:(DE-HGF)0$$aReed, Graham T.$$b11$$eEditor
000910693 7001_ $$0P:(DE-HGF)0$$aKnights, Andrew P.$$b12$$eEditor
000910693 773__ $$0PERI:(DE-600)2545688-X$$a10.1117/12.2609537$$p9$$tSPIE reviews$$v12006$$x1946-3251$$y2022
000910693 909CO $$ooai:juser.fz-juelich.de:910693$$pVDB
000910693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180877$$aForschungszentrum Jülich$$b2$$kFZJ
000910693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186980$$aForschungszentrum Jülich$$b3$$kFZJ
000910693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
000910693 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910693 9141_ $$y2022
000910693 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000910693 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910693 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000910693 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000910693 980__ $$ajournal
000910693 980__ $$aVDB
000910693 980__ $$acontrib
000910693 980__ $$aI:(DE-Juel1)IEK-1-20101013
000910693 980__ $$aI:(DE-Juel1)PGI-9-20110106
000910693 980__ $$aUNRESTRICTED
000910693 981__ $$aI:(DE-Juel1)IMD-2-20101013