001     910693
005     20240708132800.0
024 7 _ |a 10.1117/12.2609537
|2 doi
024 7 _ |a WOS:000831668100019
|2 WOS
037 _ _ |a FZJ-2022-04065
082 _ _ |a 620
100 1 _ |a Marzban, Bahareh
|0 P:(DE-HGF)0
|b 0
111 2 _ |a Silicon Photonics XVII
|c San Francisco
|d 2022-01-22 - 2022-02-28
|w United States
245 _ _ |a Modeling and design of an electrically pumped SiGeSn microring laser
260 _ _ |a Boca Raton, Fla.
|c 2022
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674463426_23242
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a suspended SiGeSn microring laser design that enables strain relaxation of the material layer stack, electrical pumping and adequate heat sinking. Using both strain and composition as two degrees of freedom to engineer the band structure, a direct bandgap is obtained in the gain material of a double heterostructure layer stack, and the L- to Γ-valley energy difference increased to 78 meV, by 66% compared to a non-underetched structure. The temperature dependent current threshold is modeled for the designed device and determined to be 18 kA/cm2 at 50 K. The fabrication process is outlined and first experimental electroluminescence results indicating the effectiveness of our approach are reported. At the time this proceedings paper is being submitted, electrically pumped lasing has also been achieved with a similar structure, with results that will be reported in a future publication.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Seidel, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kiyek, Vivien
|0 P:(DE-Juel1)180877
|b 2
|u fzj
700 1 _ |a Liu, Teren
|0 P:(DE-Juel1)186980
|b 3
|u fzj
700 1 _ |a Zöllner, Marvin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 7
|u fzj
700 1 _ |a Schulze, Jörg
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Oehme, Michael
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Witzens, Jeremy
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Reed, Graham T.
|0 P:(DE-HGF)0
|b 11
|e Editor
700 1 _ |a Knights, Andrew P.
|0 P:(DE-HGF)0
|b 12
|e Editor
773 _ _ |a 10.1117/12.2609537
|0 PERI:(DE-600)2545688-X
|p 9
|t SPIE reviews
|v 12006
|y 2022
|x 1946-3251
909 C O |p VDB
|o oai:juser.fz-juelich.de:910693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186980
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21