000910698 001__ 910698
000910698 005__ 20240711085554.0
000910698 0247_ $$2doi$$a10.1111/jace.18686
000910698 0247_ $$2ISSN$$a0002-7820
000910698 0247_ $$2ISSN$$a1551-2916
000910698 0247_ $$2Handle$$a2128/33811
000910698 0247_ $$2WOS$$aWOS:000842078100001
000910698 037__ $$aFZJ-2022-04070
000910698 082__ $$a660
000910698 1001_ $$00000-0003-3163-085X$$aPorz, Lukas$$b0$$eCorresponding author
000910698 245__ $$aMicrostructure and conductivity of blacklight‐sintered TiO 2 , YSZ, and Li 0.33 La 0.57 TiO 3
000910698 260__ $$aWesterville, Ohio$$bSoc.$$c2022
000910698 3367_ $$2DRIVER$$aarticle
000910698 3367_ $$2DataCite$$aOutput Types/Journal article
000910698 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675061222_18853
000910698 3367_ $$2BibTeX$$aARTICLE
000910698 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910698 3367_ $$00$$2EndNote$$aJournal Article
000910698 520__ $$aRapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight-sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium-ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns.
000910698 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910698 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910698 7001_ $$00000-0002-4232-3399$$aScherer, Michael$$b1
000910698 7001_ $$aMuhammad, Qaisar Khushi$$b2
000910698 7001_ $$aHiguchi, Kimitaka$$b3
000910698 7001_ $$aLi, Yan$$b4
000910698 7001_ $$aKoga, Shuhei$$b5
000910698 7001_ $$00000-0002-4324-1512$$aNakamura, Atsutomo$$b6
000910698 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b7
000910698 7001_ $$00000-0002-8827-1926$$aFrömling, Till$$b8
000910698 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.18686$$gVol. 105, no. 12, p. 7030 - 7035$$n12$$p7030 - 7035$$tJournal of the American Ceramic Society$$v105$$x0002-7820$$y2022
000910698 8564_ $$uhttps://juser.fz-juelich.de/record/910698/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202022%20-%20Porz%20-%20Microstructure%20and%20conductivity%20of%20blacklight%E2%80%90sintered%20TiO2%20YSZ%20.pdf$$yOpenAccess
000910698 909CO $$ooai:juser.fz-juelich.de:910698$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910698 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b7$$kFZJ
000910698 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910698 9141_ $$y2022
000910698 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000910698 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910698 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2019$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000910698 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910698 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000910698 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000910698 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000910698 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000910698 9801_ $$aFullTexts
000910698 980__ $$ajournal
000910698 980__ $$aVDB
000910698 980__ $$aUNRESTRICTED
000910698 980__ $$aI:(DE-Juel1)IEK-1-20101013
000910698 981__ $$aI:(DE-Juel1)IMD-2-20101013