000910701 001__ 910701
000910701 005__ 20240403082801.0
000910701 0247_ $$2doi$$a10.1038/s41578-022-00434-z
000910701 0247_ $$2WOS$$aWOS:000783161600001
000910701 037__ $$aFZJ-2022-04073
000910701 082__ $$a600
000910701 1001_ $$00000-0002-6772-7250$$aKumar, Suhas$$b0
000910701 245__ $$aDynamical memristors for higher-complexity neuromorphic computing
000910701 260__ $$aBasingstoke$$bNature Publishing Group$$c2022
000910701 3367_ $$2DRIVER$$aarticle
000910701 3367_ $$2DataCite$$aOutput Types/Journal article
000910701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710328456_3659
000910701 3367_ $$2BibTeX$$aARTICLE
000910701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910701 3367_ $$00$$2EndNote$$aJournal Article
000910701 520__ $$aResearch on electronic devices and materials is currently driven by both the slowing down of transistor scaling and the exponential growth of computing needs, which make present digital computing increasingly capacity-limited and power-limited. A promising alternative approach consists in performing computing based on intrinsic device dynamics, such that each device functionally replaces elaborate digital circuits, leading to adaptive ‘complex computing’. Memristors are a class of devices that naturally embody higher-order dynamics through their internal electrophysical processes. In this Review, we discuss how novel material properties enable complex dynamics and define different orders of complexity in memristor devices and systems. These native complex dynamics at the device level enable new computing architectures, such as brain-inspired neuromorphic systems, which offer both high energy efficiency and high computing capacity.
000910701 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910701 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910701 7001_ $$aWang, Xinxin$$b1
000910701 7001_ $$aStrachan, John Paul$$b2
000910701 7001_ $$00000-0003-4674-4059$$aYang, Yuchao$$b3
000910701 7001_ $$00000-0003-4731-1976$$aLu, Wei D.$$b4
000910701 773__ $$0PERI:(DE-600)2844635-5$$a10.1038/s41578-022-00434-z$$gVol. 7, no. 7, p. 575 - 591$$n7$$p575 - 591$$tNature reviews$$v7$$x2058-8437$$y2022
000910701 909CO $$ooai:juser.fz-juelich.de:910701$$pVDB
000910701 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT REV MATER : 2019$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000910701 915__ $$0StatID:(DE-HGF)9970$$2StatID$$aIF >= 70$$bNAT REV MATER : 2019$$d2021-02-02
000910701 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
000910701 980__ $$ajournal
000910701 980__ $$aVDB
000910701 980__ $$aI:(DE-Juel1)PGI-14-20210412
000910701 980__ $$aUNRESTRICTED