Hauptseite > Publikationsdatenbank > Dynamical memristors for higher-complexity neuromorphic computing > print |
001 | 910701 | ||
005 | 20240403082801.0 | ||
024 | 7 | _ | |a 10.1038/s41578-022-00434-z |2 doi |
024 | 7 | _ | |a WOS:000783161600001 |2 WOS |
037 | _ | _ | |a FZJ-2022-04073 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Kumar, Suhas |0 0000-0002-6772-7250 |b 0 |
245 | _ | _ | |a Dynamical memristors for higher-complexity neuromorphic computing |
260 | _ | _ | |a Basingstoke |c 2022 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710328456_3659 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Research on electronic devices and materials is currently driven by both the slowing down of transistor scaling and the exponential growth of computing needs, which make present digital computing increasingly capacity-limited and power-limited. A promising alternative approach consists in performing computing based on intrinsic device dynamics, such that each device functionally replaces elaborate digital circuits, leading to adaptive ‘complex computing’. Memristors are a class of devices that naturally embody higher-order dynamics through their internal electrophysical processes. In this Review, we discuss how novel material properties enable complex dynamics and define different orders of complexity in memristor devices and systems. These native complex dynamics at the device level enable new computing architectures, such as brain-inspired neuromorphic systems, which offer both high energy efficiency and high computing capacity. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wang, Xinxin |b 1 |
700 | 1 | _ | |a Strachan, John Paul |b 2 |
700 | 1 | _ | |a Yang, Yuchao |0 0000-0003-4674-4059 |b 3 |
700 | 1 | _ | |a Lu, Wei D. |0 0000-0003-4731-1976 |b 4 |
773 | _ | _ | |a 10.1038/s41578-022-00434-z |g Vol. 7, no. 7, p. 575 - 591 |0 PERI:(DE-600)2844635-5 |n 7 |p 575 - 591 |t Nature reviews |v 7 |y 2022 |x 2058-8437 |
909 | C | O | |o oai:juser.fz-juelich.de:910701 |p VDB |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT REV MATER : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a IF >= 70 |0 StatID:(DE-HGF)9970 |2 StatID |b NAT REV MATER : 2019 |d 2021-02-02 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-14-20210412 |k PGI-14 |l Neuromorphic Compute Nodes |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-14-20210412 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|