000910702 001__ 910702 000910702 005__ 20240403082800.0 000910702 0247_ $$2doi$$a10.1007/s11071-022-07703-0 000910702 0247_ $$2ISSN$$a0924-090X 000910702 0247_ $$2ISSN$$a1573-269X 000910702 0247_ $$2WOS$$aWOS:000847150300002 000910702 037__ $$aFZJ-2022-04074 000910702 082__ $$a510 000910702 1001_ $$0P:(DE-HGF)0$$aAmeli, Sara$$b0$$eCorresponding author 000910702 245__ $$aLow-dimensional behavior of generalized Kuramoto model 000910702 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2022 000910702 3367_ $$2DRIVER$$aarticle 000910702 3367_ $$2DataCite$$aOutput Types/Journal article 000910702 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710417066_31252 000910702 3367_ $$2BibTeX$$aARTICLE 000910702 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000910702 3367_ $$00$$2EndNote$$aJournal Article 000910702 520__ $$aWe study the global bifurcation of a generalization of the Kuramoto model in the fully connected network in which the connections are weighted by the frequency of the oscillators. By driving the low dimensional manifold of this infinite-dimensional dynamical system, we obtain bifurcation boundaries for different types of transitions to the synchronized state. Using this analytic framework, we obtain the characteristic flow field of the system for each dynamical region in parameter space. To check the effect of nonzero-centered frequency distribution, we consider bimodal Lorentzian distribution as an example. In this case, the system shows three types of transitions to the synchronized state, depending on the parameters of the frequency distribution: (1) a two-step transition with Bellerophon state, (2) a continuous transition, as in the classical Kuramoto model, and (3) a first-order, explosive, transition with hysteresis. 000910702 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0 000910702 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000910702 7001_ $$00000-0001-6757-9377$$aSamani, Keivan Aghababaei$$b1 000910702 773__ $$0PERI:(DE-600)2012600-1$$a10.1007/s11071-022-07703-0$$p2781-2791$$tNonlinear dynamics$$v110$$x0924-090X$$y2022 000910702 909CO $$ooai:juser.fz-juelich.de:910702$$pVDB 000910702 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ 000910702 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 000910702 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger 000910702 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger 000910702 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNONLINEAR DYNAM : 2019$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28 000910702 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28 000910702 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0 000910702 980__ $$ajournal 000910702 980__ $$aVDB 000910702 980__ $$aI:(DE-Juel1)PGI-14-20210412 000910702 980__ $$aUNRESTRICTED