001     910702
005     20240403082800.0
024 7 _ |a 10.1007/s11071-022-07703-0
|2 doi
024 7 _ |a 0924-090X
|2 ISSN
024 7 _ |a 1573-269X
|2 ISSN
024 7 _ |a WOS:000847150300002
|2 WOS
037 _ _ |a FZJ-2022-04074
082 _ _ |a 510
100 1 _ |a Ameli, Sara
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Low-dimensional behavior of generalized Kuramoto model
260 _ _ |a Dordrecht [u.a.]
|c 2022
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710417066_31252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the global bifurcation of a generalization of the Kuramoto model in the fully connected network in which the connections are weighted by the frequency of the oscillators. By driving the low dimensional manifold of this infinite-dimensional dynamical system, we obtain bifurcation boundaries for different types of transitions to the synchronized state. Using this analytic framework, we obtain the characteristic flow field of the system for each dynamical region in parameter space. To check the effect of nonzero-centered frequency distribution, we consider bimodal Lorentzian distribution as an example. In this case, the system shows three types of transitions to the synchronized state, depending on the parameters of the frequency distribution: (1) a two-step transition with Bellerophon state, (2) a continuous transition, as in the classical Kuramoto model, and (3) a first-order, explosive, transition with hysteresis.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samani, Keivan Aghababaei
|0 0000-0001-6757-9377
|b 1
773 _ _ |a 10.1007/s11071-022-07703-0
|0 PERI:(DE-600)2012600-1
|p 2781-2791
|t Nonlinear dynamics
|v 110
|y 2022
|x 0924-090X
909 C O |o oai:juser.fz-juelich.de:910702
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NONLINEAR DYNAM : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21