001     910705
005     20230123110716.0
024 7 _ |a 10.1007/s12021-022-09572-9
|2 doi
024 7 _ |a 1539-2791
|2 ISSN
024 7 _ |a 1559-0089
|2 ISSN
024 7 _ |a 2128/32290
|2 Handle
024 7 _ |a 35347570
|2 pmid
024 7 _ |a WOS:000780463500001
|2 WOS
037 _ _ |a FZJ-2022-04076
082 _ _ |a 540
100 1 _ |a Singh, Nalini M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a How Machine Learning is Powering Neuroimaging to Improve Brain Health
260 _ _ |a New York, NY
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667394199_26460
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Harrod, Jordan B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Subramanian, Sandya
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Robinson, Mitchell
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chang, Ken
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cetin-Karayumak, Suheyla
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dalca, Adrian Vasile
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 7
|u fzj
700 1 _ |a Fox, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Franke, Loraine
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Golland, Polina
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Haehn, Daniel
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Iglesias, Juan Eugenio
|0 P:(DE-HGF)0
|b 12
700 1 _ |a O’Donnell, Lauren J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ou, Yangming
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Rathi, Yogesh
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Siddiqi, Shan H.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sun, Haoqi
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Westover, M. Brandon
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Whitfield-Gabrieli, Susan
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Gollub, Randy L.
|0 P:(DE-HGF)0
|b 20
|e Corresponding author
773 _ _ |a 10.1007/s12021-022-09572-9
|g Vol. 20, no. 4, p. 943 - 964
|0 PERI:(DE-600)2099780-2
|n 4
|p 943 - 964
|t Neuroinformatics
|v 20
|y 2022
|x 1539-2791
856 4 _ |u https://juser.fz-juelich.de/record/910705/files/s12021-022-09572-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910705
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a Massachusetts General Hospital, Boston
|0 I:(DE-HGF)0
|b 20
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROINFORMATICS : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21