Home > Publications database > Risk‐taking in the human brain: An activation likelihood estimation meta‐analysis of the balloon analog risk task (BART) > print |
001 | 910730 | ||
005 | 20230123110717.0 | ||
024 | 7 | _ | |a 10.1002/hbm.26041 |2 doi |
024 | 7 | _ | |a 1065-9471 |2 ISSN |
024 | 7 | _ | |a 1097-0193 |2 ISSN |
024 | 7 | _ | |a 2128/32870 |2 Handle |
024 | 7 | _ | |a 36441844 |2 pmid |
024 | 7 | _ | |a WOS:000842244700001 |2 WOS |
037 | _ | _ | |a FZJ-2022-04100 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Wang, Mengmeng |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Risk‐taking in the human brain: An activation likelihood estimation meta‐analysis of the balloon analog risk task (BART) |
260 | _ | _ | |a New York, NY |c 2022 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669714848_13478 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The Balloon Analog Risk Task (BART) is increasingly used to assess risk-taking behavior and brain function. However, the brain networks underlying risk-taking during the BART and its reliability remain controversial. Here, we combined the activation likelihood estimation (ALE) meta-analysis with both task-based and task-free functional connectivity (FC) analysis to quantitatively synthesize brain networks involved in risk-taking during the BART, and compared the differences between adults and adolescents studies. Based on 22 pooled publications, the ALE meta-analysis revealed multiple brain regions in the reward network, salience network, and executive control network underlying risk-taking during the BART. Compared with adult risk-taking, adolescent risk-taking showed greater activation in the insula, putamen, and prefrontal regions. The combination of meta-analytic connectivity modeling with task-free FC analysis further confirmed the involvement of the reward, salience, and cognitive control networks in the BART. These findings demonstrate the core brain networks for risk-taking during the BART and support the utility of the BART for future neuroimaging and developmental research. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zhang, Shunmin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Suo, Tao |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mao, Tianxin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wang, Fenghua |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Deng, Yao |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 6 |u fzj |
700 | 1 | _ | |a Pan, Yu |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
700 | 1 | _ | |a Jiang, Caihong |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Rao, Hengyi |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1002/hbm.26041 |g p. hbm.26041 |0 PERI:(DE-600)1492703-2 |n 18 |p 5643-5657 |t Human brain mapping |v 43 |y 2022 |x 1065-9471 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910730/files/Human%20Brain%20Mapping%20-%202022%20-%20Wang%20-%20Risk%E2%80%90taking%20in%20the%20human%20brain%20An%20activation%20likelihood%20estimation%20meta%E2%80%90analysis%20of.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:910730 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Yu Pan and Hengyi Rao, Center for Magnetic Resonance Imaging Research, Shanghai International Studies University, Shanghai, China. |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Yu Pan and Hengyi Rao, Center for Magnetic Resonance Imaging Research, Shanghai International Studies University, Shanghai, China. |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-22 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-22 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|