001     910733
005     20230224084255.0
024 7 _ |a 10.1016/j.chemosphere.2021.132771
|2 doi
024 7 _ |a 0045-6535
|2 ISSN
024 7 _ |a 1879-1298
|2 ISSN
024 7 _ |a 34740698
|2 pmid
024 7 _ |a WOS:000757882300008
|2 WOS
037 _ _ |a FZJ-2022-04103
082 _ _ |a 333.7
100 1 _ |a Tang, Ni
|0 P:(DE-Juel1)176908
|b 0
245 _ _ |a Amine- and thiol-bifunctionalized mesoporous silica material for immobilization of Pb and Cd: Characterization, efficiency, and mechanism
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673517650_31061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, a two-step functionalizing strategy by combining co-condensation with grafting procedures was employed to synthesize well-ordered Amino- and Thiol-Bifunctionalized SBA-15 (ATBS) mesoporous silica. Its physicochemical properties, performance, and mechanisms in immobilization of toxic metals Pb and Cd in water and soil were investigated. After bi-functionalization, X-ray diffractometer, transmission electron microscope, and N2 adsorption-desorption measurements confirmed that the ATBS maintained a highly-ordered mesoporous structure, large surface area and pore volume. The elemental analysis, Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy (XPS) evidenced the successful incorporation of amine and thiol groups into ATBS. These structure and functional characteristics of ATBS benefited Pb and Cd sorption. Sorption isotherms of Pb and Cd were better fit with Sips and Redlich-Peterson models. Sorption kinetics suggested that Pb sorption was mainly regulated by chemical reactions, whereas both diffusion process and chemical reactions were rate-regulating steps in Cd sorption. ATBS showed the maximum sorption capacities for Pb and Cd at 120 and 38 mg g−1, respectively. The sorption mechanisms revealed by XPS measurements suggested that Cd sorption was mainly attributed to thiol groups while Pb was efficiently bond to both thiol and amino groups. High and stable sorption efficiencies were attained in the pH range of 4–6, with a higher affinity towards Pb than Cd. Furthermore, its ability to immobilize Pb and Cd in soils was examined with an incubation experiment, which showed that ATBS reduced 30–56% of MgCl2-extractable Pb and Cd in a contaminated soil. The synthesized sorbent via the two-step functionalizing strategy shows high sorption efficiency towards Pb and Cd, and thus it has potential application in remediating Pb and Cd contaminated water and soils.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liu, Xue
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jia, Meng-Ru
|0 0000-0001-9493-9331
|b 2
700 1 _ |a Shi, Xin-Yao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fu, Jing-Wei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Guan, Dong-Xing
|0 0000-0002-9797-0681
|b 5
700 1 _ |a Ma, Lena Q.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.chemosphere.2021.132771
|g Vol. 291, p. 132771 -
|0 PERI:(DE-600)1496851-4
|p 132771 -
|t Chemosphere
|v 291
|y 2022
|x 0045-6535
909 C O |o oai:juser.fz-juelich.de:910733
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176908
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMOSPHERE : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMOSPHERE : 2021
|d 2022-11-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21