000910734 001__ 910734
000910734 005__ 20230224084254.0
000910734 0247_ $$2doi$$a10.3390/met12030489
000910734 0247_ $$2Handle$$a2128/33718
000910734 0247_ $$2WOS$$aWOS:000774163500001
000910734 037__ $$aFZJ-2022-04104
000910734 082__ $$a530
000910734 1001_ $$0P:(DE-Juel1)187252$$aRoy, Shyamal$$b0$$ufzj
000910734 245__ $$aInvestigating Nanoscale Contact Using AFM-Based Indentation and Molecular Dynamics Simulations
000910734 260__ $$aBasel$$bMDPI$$c2022
000910734 3367_ $$2DRIVER$$aarticle
000910734 3367_ $$2DataCite$$aOutput Types/Journal article
000910734 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674197864_28374
000910734 3367_ $$2BibTeX$$aARTICLE
000910734 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910734 3367_ $$00$$2EndNote$$aJournal Article
000910734 520__ $$aIn this work we study nanocontact plasticity in Au thin films using an atomic force microscope based indentation method with the goal of relating the changes in surface morphology to the dislocations created by deformation. This provides a rigorous test of our understanding of deformation and dislocation mechanisms in small volumes. A series of indentation experiments with increasing maximum load was performed. Distinct elastic and plastic regimes were identified in the force-displacement curves, and the corresponding residual imprints were measured. Transmission electron microscope based measured dislocation densities appear to be smaller than the densities expected from the measured residual indents. With the help of molecular dynamics simulations we show that dislocation nucleation and glide alone fail to explain the low dislocation density. Increasing the temperature of the simulations accelerates the rate of thermally activated processes and promotes motion and annihilation of dislocations under the indent while transferring material to the upper surface; dislocation density decreases in the plastic zone and material piles up around the indent. Finally, we discuss why a significant number of cross-slip events is expected beneath the indent under experimental conditions and the implications of this for work hardening during wear.
000910734 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910734 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910734 7001_ $$aWille, Sönke$$b1
000910734 7001_ $$00000-0001-8523-7362$$aMordehai, Dan$$b2
000910734 7001_ $$00000-0001-6676-8758$$aVolkert, Cynthia A.$$b3$$eCorresponding author
000910734 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met12030489$$gVol. 12, no. 3, p. 489 -$$n3$$p489 -$$tMetals$$v12$$x2075-4701$$y2022
000910734 8564_ $$uhttps://juser.fz-juelich.de/record/910734/files/Roy_et_al_metals-12-00489%20%281%29.pdf$$yOpenAccess
000910734 909CO $$ooai:juser.fz-juelich.de:910734$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187252$$aForschungszentrum Jülich$$b0$$kFZJ
000910734 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910734 9141_ $$y2022
000910734 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910734 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910734 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910734 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000910734 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910734 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000910734 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2021$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T19:50:18Z
000910734 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T19:50:18Z
000910734 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T19:50:18Z
000910734 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000910734 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000910734 920__ $$lyes
000910734 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000910734 980__ $$ajournal
000910734 980__ $$aVDB
000910734 980__ $$aUNRESTRICTED
000910734 980__ $$aI:(DE-Juel1)IAS-9-20201008
000910734 9801_ $$aFullTexts