000910736 001__ 910736
000910736 005__ 20230224084251.0
000910736 0247_ $$2doi$$a10.1016/j.msea.2022.143125
000910736 0247_ $$2ISSN$$a0921-5093
000910736 0247_ $$2ISSN$$a1873-4936
000910736 0247_ $$2Handle$$a2128/33532
000910736 0247_ $$2WOS$$aWOS:000805064200001
000910736 037__ $$aFZJ-2022-04106
000910736 082__ $$a530
000910736 1001_ $$0P:(DE-HGF)0$$aLaschet, Gottfried$$b0$$eCorresponding author
000910736 245__ $$aMicrostructure impact on the machining of two gear steels. Part 1: Derivation of effective flow curves
000910736 260__ $$aAmsterdam$$bElsevier$$c2022
000910736 3367_ $$2DRIVER$$aarticle
000910736 3367_ $$2DataCite$$aOutput Types/Journal article
000910736 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673536643_10257
000910736 3367_ $$2BibTeX$$aARTICLE
000910736 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910736 3367_ $$00$$2EndNote$$aJournal Article
000910736 520__ $$aA multiscale approach is presented here to investigate the effect of the ferrite-pearlite microstructure after annealing on the subsequent machining process of steel gears. The case-hardening steel 18CrNiMo7-6 and a cost efficient alternative with reduced Cr and Ni content have been studied. After detailed microstructure characterization, three different scales are defined: the nano-scale with pearlite, built of ferrite-cementite bi-lamellas, the micro-scale, which corresponds to a RVE of the ferrite/pearlite microstructure and the macro-scale. In order to derive the effective flow behaviour of pearlite, virtual uniaxial tensile and shear tests of the ferrite/cementite bi-lamella are performed at the nanoscale. The flow behaviour of the ferrite phase is described there by an extension of the Kocks-Mecking law suitable for large machining strains. Moreover, at the nanoscale, the effective flow curve of the ferrite matrix having either small MnS or NbC inclusions is determined. At the microscale, effective flow curves for both steel grades are derived from virtual tests on 3D RVE's of both steel microstructures and compared with experimental measurements.
000910736 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910736 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910736 7001_ $$0P:(DE-HGF)0$$aAbouridouane, M.$$b1$$eCorresponding author
000910736 7001_ $$00000-0003-1840-1243$$aFernández, M.$$b2$$eCorresponding author
000910736 7001_ $$0P:(DE-Juel1)186706$$aBudnitzki, M.$$b3$$eCorresponding author
000910736 7001_ $$0P:(DE-HGF)0$$aBergs, T.$$b4$$eCorresponding author
000910736 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2022.143125$$gVol. 845, p. 143125 -$$p143125 -$$tMaterials science and engineering / A$$v845$$x0921-5093$$y2022
000910736 8564_ $$uhttps://juser.fz-juelich.de/record/910736/files/Gear_mod_JC_law_rev.pdf$$yPublished on 2022-04-29. Available in OpenAccess from 2024-04-29.
000910736 909CO $$ooai:juser.fz-juelich.de:910736$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186706$$aForschungszentrum Jülich$$b3$$kFZJ
000910736 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910736 9141_ $$y2022
000910736 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910736 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910736 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000910736 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000910736 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000910736 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000910736 920__ $$lyes
000910736 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000910736 980__ $$ajournal
000910736 980__ $$aVDB
000910736 980__ $$aUNRESTRICTED
000910736 980__ $$aI:(DE-Juel1)IAS-9-20201008
000910736 9801_ $$aFullTexts