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ABSTRACT

A multiscale approach is presented here to investigate the effect of the ferrite-pearlite microstructure
after  annealing  on  the  subsequent  machining  process  of  steel  gears.  The  case-hardening  steel
18CrNiMo7-6 and a cost efficient alternative with reduced Cr and Ni content have been studied.
After detailed microstructure characterization, three different scales are defined: the nano-scale with
pearlite, built of ferrite-cementite bi-lamellas, the micro-scale, which corresponds to a RVE of the
ferrite/pearlite microstructure and the macro-scale. In order to derive the effective flow behaviour of
pearlite, virtual uniaxial tensile and shear tests of the ferrite/cementite bi-lamella are performed at
the nanoscale. The flow behaviour of the ferrite phase is described there by an extension of the
Kocks-Mecking law suitable for large machining strains. Moreover, at the nanoscale, the effective
flow curve of the ferrite matrix having either small MnS or NbC inclusions is determined. At the
microscale, effective flow curves for both steel grades are derived from virtual tests on 3D RVE’s of
both steel microstructures and compared with experimental measurements.  

Keywords:  Micromechanics,  Homogenization,  ferrite-pearlite  microstructure,  work  hardening
modelling, large plastic deformation.

1. Introduction

The  worldwide  demand  of  alternative  energy  production  has  strongly  increased  over  the  past

decades. This demand requires among others the development of efficient wind energy converters.

For this purpose, hot-forged steel gear wheels are widely used. Their manufacturing process chain

involves various process steps such as continuous casting,  hot rod rolling and forging. They are

followed by a direct annealing to produce a ferrite-pearlite microstructure suitable for machining the

gear preform. After machining, the carburising step allows to increase the wear resistance of the

gears by inducing a martensite transformation at their surface.  

In  this  study,  two different  steel  grades  are  used  to  manufacture  gear  preforms:  the  case

hardening  18CrNiMo7-6  alloy,  commonly  used  in  automotive  gears,  and  a  lower  cost  variant.

Indeed,  in  order  to  reduce  the  production  costs  and increase  its  performance,  a  variant,  named

“substitute”, has been developed recently by removing the expensive Ni, reducing Cr and adding Mn

and Mo [1]. In order to investigate the impact of their chemistry and their specific ferrite-pearlite

microstructure after annealing on the subsequent cutting process step, predictive micro-models have

to be established and integrated into a comprehensive virtual simulation platform, like AixViPMaP

[2]. Such an ICME approach [3] allows for the consideration of all relevant phenomena at the micro
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scale within the macro-simulations of the gear production and constitutes a serious advantage over

the studies describing the material behaviour only during a single production step.

The aim of the present multi-scale analysis is to derive macroscopic stress-strain curves for each

gear  preform  based  on  the  knowledge  of  its  chemical  composition  and  its  ferrite-pearlite

microstructure, building thus a valuable basis in order to answer following questions: 1. “How does

the microstructure after annealing of each steel grade influence the subsequent machining step? 2. Is

the cheaper variant a viable alternative to the 18CrNiMo7-6 alloy concerning its machinability?” in

the 2nd part  of the present  paper.  Experimental  characterization  of both steel  grades,  outlined  in

section 2, determines  their  microstructural  features (grain size,  interlamellar spacing and pearlite

content) and identifies the nature, size and shape of the inclusions in the ferrite matrix. As pearlite is

an eutectoid phase mixture, composed of alternating ferrite and cementite lamellae, three different

scales have been distinguished for the ferrite-pearlite steel gear grades: the  nanoscale where the

pearlite is modelled by a repetition of ferrite/cementite bi-lamellas and the inclusions are modelled

within the ferrite matrix, the microscale of the ferrite-pearlite microstructure and the macroscale of

the cutting process. A two-level homogenization scheme is adopted here. It has been applied in the

past with success to the derivation of anisotropic flow curves of a ferrite-pearlite pipeline steel [4]

and gear steels [5]. In these investigations the work hardening model of Gutierrez and Altuna [6]

was adopted for the ferrite phase. This model works well at small strains where the assumption of

strain independence of the mean free dislocation path is valid. But, as very large strains occur in

cutting operations, it is important to derive another physically based hardening law for the ferrite

matrix  and for ferrite  in pearlite  which takes strong dislocation  interactions  at  large strains into

account. The development of such model will be outlined in section 3.  

Several physics-based models [7-14] have been developed based on the Kocks-Mecking-Estrin

theory  (KME)  [7,  8],  which  describes  the  fundamental  relationship  between  flow stress,  work

hardening and dislocation density evolution during plastic deformation. They formulate the rate of

change  of  the  dislocation  density  as  a  competition  between  storage  and  annihilation  rates  of

dislocations during plastic deformation. Sinclair et al. [9] included the grain size effect on the initial

work hardening behaviour by taking dislocation – grain boundary (GB) interactions into account.

Moreover, the pile-up of dislocations at the GB induces a long-range back stress, responsible for a

kinematic  hardening contribution.  Bouquerel  et  al  [10] proposed to incorporate  the influence of

dislocation-dislocation interactions. Delincé et al [11] generalize Sinclair et al. model by limiting

grain boundary dislocations (GBD) at large strains.  Their model constitutes an interesting basis for

our model description as several dislocation evolution mechanisms are well addressed. However, the

experimentally observed nonlinearity of the decrease of the stress-strain slope with increasing stress

at large strains is not addressed there. Therefore, we will extend Delincé’s model by introducing the

Hariharan and Barlat [12] KME extension, namely the nonlinear dependence of the free dislocation

path (D) on the dislocation density.  Note that Bouaziz [13] and Barlat [14] proposed analogous

KME model extensions to avoid too rapid saturation of strain hardening at higher stresses. 

As already shown in [4], the anisotropic, inelastic behaviour of the cementite phase has also to be

addressed in the bi-lamella homogenization of the pearlite.  The delicate derivation of elastic and



inelastic properties of this metastable phase has been revisited, as outlined in section 4. Note that

Berisha et al [15] performed a microscopic modelling of pearlite hardening and failure behaviour.

However, they consider the cementite layer as isotropic elasto-plastic material and thus neglect their

strong orthorhombic anisotropy. They describe ferrite by a phenomenological crystal plasticity law

and used the spectral solver of DAMASK [16] to model strain localization at the grain level. 

 In section 5, the effective anisotropic elastic behaviour and flow curves of the ferrite/pearlite bi-

lamella are derived as well as the equivalent elastoplastic behaviour of the ferrite matrix doted either

with small, soft MnS particles (18CrNiMo7-6 grade) or with small hard NbC particles (substitute

grade).  Eventually,  in  section  6,  effective  flow curves  of  the ferrite-pearlite  microstructures  are

derived and compared with experimental stress-strain curves for each steel grade. Moreover, the

back-  stresses  in  both  ferrite-pearlite  microstructures,  induced  by  kinematic  hardening,  are

determined based on the Allain-Bouaziz approach [17] and discussed there.

2. Experimental investigation: materials characterization and compression tests

2.1 Microstructure characterization

The chemical composition of the investigated steel grades is given in Table 1. The 18CrNiMo7-6

case hardening steel was produced by continuous casting in industry while the substitute grade was

cast at the Institute for Ferrous Metallurgy (IEHK) of Aachen University. As detailed in [1], this Ni

free variant has lower Cr content but increased Mn, Mo and C content.

Table 1. Chemical composition in wt % of the reference 18CrNiMo7-6 and of the substitute grade. 

Steel C Cr Ni Mo Mn Nb Al Cu Si P

Ref. 0.18 1.55 1.6 0.27 0.5 0.03 0.03 0.30 0.24 0.015

Subst. 0.21 1.3 0 0.5 1.5 0.07 0.03 0.25 0.24 0.01

As  expected,  the  Electron  Probe  Micro-Analyses

(EPMA) showed a ferrite-pearlite microstructure in

the tooth region of both steel gear preforms after

the annealing step (see Fig. 1 and 2). Note that this

study  investigates  mainly  the  strongly  stressed

tooth region; whereas in Ref. [5] the bulk region of

the gear was investigated.  The lamellas of ferrite

and cementite in the pearlite of the substitute grade

are not so parallel and exhibit some wrinkles (see

Fig. 2d); whereas the pearlite of the reference steel

presents quasi-parallel lamellas (see Fig. 2b). Fig. 1: Analysed tooth region of the gear

preform.

This has a direct impact on the definition of the lamella length and width. The EPMA images of

the ferrite matrix show that small MnS inclusions exist in the 18CrNiMo7-6 alloy (see Fig. 3a);



whereas in the substitute steel small hard NbC carbides and few large CeS inclusions are detected in

its ferrite matrix (Fig. 3b and 3c). The nature of the foreign phases in both ferrite matrices have been

identified by using the  Wavelength  Dispersive X-ray  Spectroscopy (WDS) technique.  Using the

image  software  AZtec,  the  number  of  inclusions,  their  shape  and  area  are  measured  in

microstructure windows of 1 mm2 size within the zone of interest (see Fig.1). The pearlite contents,

given in Table 2, correspond to the local value at the same tooth location in both preforms. In the

reference grade,  8495 small  MnS particles  with an ellipsoidal  shape were counted.  They have a

mean size of 0.132 m2. In the substitute steel 1474 small NbC carbides of ellipsoidal or prismatic

shape having a mean size of 0.216 m2 and 198 large, quasi-spherical CeS inclusions with a mean

size of 37.45 m2 were detected. The mean size of ferrite and pearlite grains is outlined in Table 3

for both steel variants. The lamella spacing and its extension are given also in Table 3. The mean

length of the straight 18CrNiMo7-6 lamellas (see Fig. 2b) is easily identified to be 7 m.  However,

the length of the curved lamellas in the substitute grade material is delicate to specify. Here, a width

and length of 4.5 m is adopted. 

 

Fig. 2: EPMA analyses of the annealed 18CrNiMo7-6 steel a) and of the substitute variant c) in the 

tooth gear region of the gear and zoom of pearlite grain of reference b) and substitute variants d).

Compared  to  the  18CrNiMo7-6  steel,  the  substitute  variant  presents  smaller  grain  sizes,  a

noticeable increase of pearlite content and a smaller interlamellar spacing, which induce stronger

hardening.

a b

c d



Fig. 3: EPMA images of the ferrite matrix of the 18CrNiMo7-6 steel a) and of the annealed 

substitute grade b); c) shows the detected inclusions in the substitute grade.

Table 2. Phase content in wt % of both grades in the tooth region of the gear preform and the area 

fraction (Af in %) of the detected inclusions. 

Grade Ferrite Pearlite Inclusions [%]

[%] [%] MnS NbC CeS

Ref. 57 43 0.131 - -

Subst. 46 54 - 0.021 0.322

Table 3. Average grain size, interlamellar spacing, length and width of the lamella in [m] of both 

microstructures. 

Grade Grain size [m] Interlamellar spacing [m] Lamellar length [m]

Ref. 31.16 0.3061 7.0

Subst. 16.51 0.2812 4.5

2.2 Compression test setup and results

To validate the flow curves determined by homogenization, compression tests were performed on a

servo-hydraulic  press  using cylindrical  samples  with  a  high of  9 mm and a  diameter  of  6 mm,

extracted from the tooth region of both gear preform variants. The samples were compressed in a

single hit using either a very low strain rate of 2.5E-04 s-1, corresponding to a quasi-static loading, or

a strain rate of ϵ̇=0.01 s-1 to a maximum deformation of  ≈ 0.75. Two samples per strain rate and

steel grade have been compressed. To reduce the influence of friction Teflon was used as lubricant. 

Subsequently,  main  elastoplastic  flow



curves were determined from the measured

force-displacement data. In this process, the

elastic deformation as well as settlements in

the  machine  were  compensated.  The

resulting  mean  flow  curves  are  shown  in

Fig.  4.  As  expected,  the  substitute  grade

exhibits  a  stronger  initial  strain  hardening

than the 18CrniMo7-6 alloy due to smaller

grain  size  and  larger  pearlite  content.

Higher  strain  rate  (ϵ̇=0.01 s-1)  induces  a

further  slight  increase  of  the  work

hardening of both steel grades.

F

ig. 4: Experimental flow curves at strain rate  ϵ̇=¿

2.5 10-4 s-1 and  ϵ̇=¿ 0.01 s-1 derived from uniaxial

compression tests.

3. Work-hardening model  

First, the flow stress of work-hardened polycrystals is defined by the internal stresses due to the

presence of forest and mobile dislocations. According to Taylor’s theory [18], a general equation

relates the macroscopic flow stress to the total dislocation density  via expression:

σ=σ 0+σ ϵ=σ0+αMbG√ρ (1)

in which σ 0 is a strain and dislocation independent term,  is a numerical factor that characterizes

the dislocation-dislocation interaction (= 0.33), G the shear modulus and b the Burgers vector of

the considered bcc ferrite phase and M is the Taylor factor. The second term of relation (1) specifies

the isotropic hardening of the material. The initial yield strength σ 0 depends on the Peierls-Nabarro

force and on the effect of solutes and it includes the grain size effect, well known as the Hall-Patch

effect [19]. Hence, σ 0 can be written as:

σ 0=σ 00+σ HP=σ 00+
k HP

√D
(2)

in which k HP is a material constant: k HP ≅15 MPa√mm, D represents the average mean free

path for dislocation movement and  σ 00 is the contribution of the Peierls force and solute solution

strengthening. In the case of the ferrite matrix, D corresponds to the mean grain size; whereas for the

ferrite layer within pearlite nearby to its thickness. According to Gutierrez & Altuna [6], the initial

yield stress contribution  σ 00 can be expressed in function of the different  solute elements  in the

considered steel grade:

σ 00=σ fr+32 Mn+678 P+83 Si+39Cu+45∋−31Cr+11 Mo+5544 (N SS+CSS)    (3)

where σ fr denotes the lattice friction, given by σ fr = 77 MPa and the concentrations are expressed in

wt%. NSS and CSS are respectively the interstitial atoms N and C in solid solution in the ferrite phase.



Second, according to Kocks, Mecking and Estrin’s pioneer work [7, 8], the evolution of the total

dislocation  density  with  strain  is  a  result  of  the  competition  between  the  production  rate  of

dislocations and their annihilation rate due to dynamic recovery, which is temperature and strain rate

dependent: dρ

d ϵ p=M ( k1√ ρ

b
−k2 ρ) ,

(4) 
where k1 is a material dependent storage constant and k2 is the dynamic recovery constant

and ϵ p, the equivalent plastic strain.

In order to take the dislocation pile-ups at the grain boundaries into account,  Delincé et  al [11]

generalized  the  original  KME  model  (4):  Grain  Boundary  Dislocations  (GBD)  increase  the

dislocation  storage  and  produce  also  a  net  back  stress  (kinematic  hardening  effect).  In  their

approach,  GBD’s cannot  exceed a  critical  density  and therefore  their  number  saturates  at  large

strains. They added an additional storage term due to the GBD density to the KME evolution law

(4):

 
dρ

d ϵ p=M (
k1√ ρ

b
−k2 ρ+

k3

bD (1− λ¿

λ )), (5)

in which 1/ is the GBD line length per area surface of a grain boundary, 1/* is interpreted as the

maximum density of sites that can accept a GBD and  (1− λ¿

λ ) expresses the proportion of „free

sites“ for an extra GBD. Furthermore, the GBD mean spacing is expressed by: 

1
λ
=

1
λ¿ [1−exp(−λ¿ M ϵ p

b )] . (6)

Introducing relation (6) in the differential equation (5), leads to:

dρ

d ϵ p=M ( k1√ ρ

b
−k2 ρ+

k3

bD
exp ⁡(

−M λ¿

b
ϵ p

)). (7)

Third, dislocations which accumulate along a GB produce also kinematic hardening and cause a

back stress X due to their polarization. Delincé et al [11] evaluated this back stress in presence or not

of screening of the long range dislocation stress field by following expression: 

X=
M '
2 π

.
Gb
λ [1−(1− w

D ) λ¿

λ ] , (8)

where M‘ is a generalized Taylor factor which depends on the grain shape and crystallographic

structure and w corresponds to the width of the GB. 

Note that under radial loading, like in uniaxial tensile tests, isotropic and kinematic hardening are

combined into an effective flow stress by summing up expressions (1) and (8):

σ=σ 0+αMbG√ ρ+
M '
2 π

. Gb
λ [1−(1− w

D ) λ¿

λ ] . (9)

Fourth, expression (7) of the Delincé KME model neglects the fact that the slope of the stress-strain

curve becomes nonlinear at  larger strains [12-14]. As we want derive a physically based model



suitable  for  cutting  simulations,  where  large  strains  occur,  it  is  important  to  further  extend the

dislocation evolution law (7). As suggested by Hariharan and Barlat [12], the pure linear dependence

of the first storage term with √ ρ can be replaced by an exponential expression as follows: 

dρ

d ϵ p
=M ¿, (10)

    where  is a positive material parameter, which has to be fitted to experimental data. 

Expression (10) is path independent and assures that the mean free dislocation path D decreases with

the strain increase and that the stress-strain slope varies nonlinearly with the stress, as observed

experimentally [20]. Expanding the exponential in series, ignoring the higher order terms and setting

= 1.0, we retrieve the original Delincé model. Relation (10) is an ODE that is solved numerically

using a 4th order Runge-Kutta scheme, starting with a known or estimated initial dislocation density

0. The obtained total dislocation density is then introduced in equation (9) to get the equivalent

flow stress. 

Eventually,  in  Table  4  are  summarized  all  the  material  parameters  of  the  developed  micro-

mechanical work hardening model (eq. 9 -10).

 

Table 4: Description, symbol, value and unit of the different parameters of the micro-mechanical

model.

Parameter Symbol Value Unit

Shear modulus of ferrite G 80. GPa

Magnitude of Burgers vector B 2.5 10-10 m

Taylor constant  0.33 -

Taylor factor M 3 -

Dislocation mean free path D location dependent m

Carbon content in ferrite CSS grade dependent wt.%

Minimal GBD spacing * 2. 10-8 m

Screening parameter W 5.10-7 m

Dislocation storage constant k1 grade dependent -

Dislocation annihilation constant k2 grade dependent -

GBD storage term k3 0.1 -

Nonlinear hardening coefficient  grade dependent M

Back-stress factor M’/M 0.4 -

Lattice friction stress fr 77 MPa

Hall-Petch coefficient kHP 15. MPa.√mm

Initial dislocation density 0 location dependent m-2

4. Micromechanical modelling of ferrite and cementite

4.1 Elastic behaviour of ferrite and cementite



Based on the chemical  composition of each steel grade (see table  1),  the Ghosh and Olson

approach [21] is used to evaluate a concentration dependent shear modulus of the single crystal

ferrite phase at room temperature. Then, by assuming the same stiffness ratios C11/C44 and C12/C44 as

for Fe0.023C0.17Mn ferrite single crystal [22], we get the cubic elastic constants of the ferrite phase

at room temperature as shown in Table 5.

Table 5: The cubic elastic constants of the ferrite phase at room temperature. 

Grade C11 [GPa] C12 [GPa] C44 [GPa]

ref. 227.6 131.3 115.1

subst. 229.2 132.2 115.9

The cementite phase of the eutectoid pearlite has an orthorhombic lattice (a = 5.09 A, b = 6.74

A, c = 4.52 A). This phase is substantially  harder than ferrite and quite brittle.  As cementite is

metastable  at  all  temperatures,  it  is  difficult  to  produce  test  specimens  for  mechanical  testing.

Therefore,  first principles simulations are performed to derive the elastic constants of cementite.

Mauger  et  al.  [23]  derived  recently  via  constant  volume  DFT  simulations  firstly  temperature

dependent  elastic  constants  of  cementite.  These  theoretical  values  overestimate  however

experimentally measured Young moduli at RT by Koo et al [24] and Alkorta and Gil Sevillano [25].

Applying Koo’s reduction factor 8.6%, to Mauger’s elastic constants at RT we obtain the elastic

constants of cementite at table 6. These elastic constants underlie the pronounced elastic anisotropy

of the cementite  phase,  characterized by a very small  shear stiffness C44.  Note that these elastic

constants improve Jiang et al.’s [26] ones, obtained at 0 K and used in our previous investigations

[4, 5], by reducing the global cementite stiffness and its extreme shear anisotropy. 

Table 6: Elastic constants of cementite at room temperature [GPa].

C11 C22 C33 C12 C13 C23 C44 C55 C66

314.8 306.4 280.1 130.7 123.8 157.2 28.8 120.4 121.3

The orthorhombic symmetry of its Hooke tensor C

is illustrated via the normal projections p(C,n) of the

Hooke  matrix  in  Fig.  5.  The  normal  projection  of

tensor C on normal vector n is defined by:

     p (C , n )= ∑
i , j ,k , l=1

3

C ijkl ni n j nk nl          (11)

Note  that  each  point  of  the  depicted  surface

corresponds  to  the  considered  normal  multiplied  by

p(C,n). 

As  both  investigated  steel  grades  are  hypo-eutectoid



steels,  the  orientation  relationship  of  Isaichev  [27]

between ferrite and cementite is adopted here for both

steel grades. 

Fig.  5:  Normal  projection  p(C,n)  [GPa]  of

Hooke tensor C of cementite.

4.2  Elastoplastic behaviour of ferrite

4.2.1 Ferrite matrix

The generalized  KME law (10)  was used  to  describe  the  evolution  of  the  total  dislocation

density during plastic deformation in the ferrite matrix. The corresponding macroscopic flow stress

 is given by expression (9). The different chemical composition of both investigated steel grades

enters via expression (3) in the definition of the initial yield stress contribution  00. As the carbon

solution in ferrite is multiplied by a large factor, its value is the dominant term, which is difficult to

specify as the annealed microstructure is not in thermodynamic equilibrium. We adopt here CSS  =

0.003  wt% for  the  18CrNiMo7-6  grade  and  a  slightly  higher  value  CSS =  0.004  wt% for  the

substitute, due to the higher carbon content in its composition (see Table 1). Moreover, the initial

dislocation density after annealing is assumed to be low in both steels:  0 = 2. 1012 m-2. The mean

grain size in both grades specifies their specific mean free path: D=31.16 m for reference steel and

D=16.51 m for the substitute. The parameters of the isotropic and kinematic contributions (eq. 7

and 8) of the GBD are defined according to Delincé et al [11]: M’ = 0.4M, minimal GBD spacing *

= 0.02 m, screening width w = 0.4 m and coefficient k3 = 0.1. 

A sensitivity  analysis  of  the  generalized  KME law (10)  is  performed by varying  the  most

sensitive parameters, namely the storage constant k1, the dynamic recovery k2 and the hardening

coefficient  . In figure 6 are drawn the sensitivities of parameters k1 and k2 and in Fig. 7.left the

sensitivity of hardening parameter . As expected, the variation of the storage constant k1 increases

significantly the yield stress, mainly at small strains; whereas the dynamic recovery k2 reduces it.

Note that the nonlinear hardening parameter  has the largest impact on the yield stress. Due to this

strong impact, its variation range is restricted here closely to the value identified by Hariharan &

Barlat [12]: 0.055    0.065 [m]. Then, the unknown KME model parameters k1 and k2 of the

ferrite matrix are derived from a least-square fitting of the effective flow obtained by the two-level

homogenization with the experimental quasi-static flow curve (ϵ̇=¿ 2.5 10-4 s-1) (see Fig. 4).  

In  table  7  are  reported  their  values  for  both  steel  grades.  In  Fig.  8.left  are  drawn  the

corresponding elastoplastic flow curves of the ferrite matrix for the studied gear steels. As expected,

the substitute alloy presents stronger hardening of its matrix than the reference grade due to the

smaller grain size. A noticeable larger storage coefficient k1 characterizes this behaviour. On the

other side, its larger recovery coefficient k2 induces lower yield increase at larger strains.

Table 7: Fitted parameters of the generalized KME law for the ferrite matrix of both steel grades.   

Grade k1 k2  [m]

Reference 0.150 1.05 0.06

Substitute 0.242 1.70 0.055



4.2.2 Ferrite in pearlite

The main differences between ferrite in the matrix and in the pearlite eutectoid are the different

mean free dislocation path D of the ferrite in pearlite and the absence of screening for the GBDs.

The residual dislocation density after annealing is assumed to be slightly larger there than in the

matrix:  0 = 3.  1012 m-2.  At  thermodynamic  equilibrium,  the volume fractions  of cementite  and

ferrite in pearlite are VC =1/9 and VF = 8/9. Thus, the ferrite layer thickness F is easily given by: F =

8/9.. 

Fig. 6: Sensitivity of the generalized KME yield stress of the ferrite matrix of both steel grades

with respect to the storage constant k1 (left) and to the recovery parameter k2 (right).

Fig. 7: Sensitivity of the generalized KME yield stress of the ferrite matrix of both steel grades

with respect to the nonlinear hardening parameter   (left).  2D definition of dislocation mean free

path D for ferrite in pearlite (right).

In a first approximation, the mean free path D of ferrite can be expressed via expression (12)

(see Fig. 7.right), where Lw is the width and Le the extension of the layer: D = √❑F
2
+(L¿¿w2

+Le
2
)/4 ¿ (12)



With the interlamellar spacing, width and extension given in table 3 for both grades, the mean free

path becomes Df,Ref = 4.957 m for the 18CrNiMo7-6 alloy and Df,Sub = 3.192 m for substitute grade

respectively. Performing then an analogous sensitivity analysis for the ferrite in pearlite described by

the  KME model  (10)  as  for  the  ferrite  matrix,  followed  by  a  least-square  fitting  via  the  only

available experimental stress-strain curve (see Fig. 4), we obtain the fitted material parameters k1, k2

and  of table 8 for ferrite in pearlite.

Table 8: Fitted parameters of the generalized KME law for the ferrite layer in pearlite of both steel

grades. 

Grade k1 k2   [m]

Reference 0.235 1.06 0.06

Substitute 0.365 2.20 0.06

Compared to the ferrite matrix the storage constant k1 has increased substantially by 56.7% for the

reference alloy and by 50.38 % for the substitute variant. The nonlinear hardening coefficient  is

unchanged for the reference alloy and increases slightly for the substitute;  whereas the dynamic

recovery  constant  k2 is  quasi  constant  for  the  reference  alloy  and  increases  by  29.4% for  the

substitute. In Fig. 8.right are drawn, for both grades, the flow curves of the ferrite phase in pearlite.

Again the flow curve of the substitute alloy presents larger hardening than the reference one mainly

due to the reduced mean free dislocation path and interlamellar spacing. Moreover, the initial yield

stress of substitute is higher due to the Hall-Petch effect induced by its smaller mean free dislocation

path D.

 

Fig. 8: Elastoplastic behaviour of ferrite matrix (left) and ferrite in pearlite (right) for both steel

grades.

4.3 Anisotropic inelastic behaviour of cementite

As  cementite  is  metastable  at  all  temperatures,  it  is  delicate  to  produce  specimens  for

mechanical testing. Nonetheless, Luque et al. [28] deduced from indentation tests at RT on single



crystal cementite plates a mean strength of 4 GPa. Based on this yield strength value, Laschet et al.

[4] have shown that it is important to take not only its inelastic behaviour but also its anisotropic

nature into account. For the polycrystalline cementite lamella, we adopt again the anisotropic Hill

yield criterion [29], where each tensile yield stress ratio Rii (Rij=
σ ij

Y

σ 0

 ; with σ 0=σ 11
Y )  is given by the

corresponding stiffness ratio Cii/C11 with i=2, 3. Then, the lowest compression strength of 2.76 GPa,

measured by Umemoto et al. [30], is used here to specify the smallest yield ratio R23  in the shear

plane  2-3;  whereas  in  the  planes  1-2  and  1-3  larger  shear  yield  ratios  are  adopted,  as  larger

experimental shear stiffnesses are measured in these planes [25]:

R11 = 1  ;  R22 = 0.97  ;  R33 = 0.89  ;  R12 = 0.78  ;  R13 = 0.77  ; R23 = 0.69. (13)

To derive a realistic estimate of the plastic behaviour of the cementite phase, the recent X-ray

diffraction measurements by Taniyama et al. [31] of the dislocation density in the cementite layer of

a drawn pearlitic steel at different strains are used here: 0 = 2. 1013 m-2 at = 0.;  = 4. 1014 m-2 at
 = 0.24 and 4.7  1014 m-2 at  =3.35. These  strain  dependent  densities  are  fitted  here  by  a

hardening law of Gutierrez-Altuna type [6]:

ρ= 1
bD k2

[1−e (−k2 Mϵ ) ]+ρ0 e(−k 2 Mϵ ) , (14)

 where D = 12 nm and b = 0.503 nm [31]; whereas  parameter k2 is unknown and fitted. 

Fig. 9: Elasto-plastic curves of cementite in pearlite of reference and substitute steel grades, derived

from  RX  measurements  (left).  Bi-lamella  RVE  discretization  of  pearlite  (reference  steel)  and

definition of the local axis system e1, e2, e3 (right).



Then, assuming that the pearlitic steel of Taniyama’s analysis and the investigated gear steels have

the  same  
1

bD k2
 coefficient  in  expression  (14),  we get  a  different  hardening  behaviour  of  the

cementite in both steels (see Fig. 9.left),  as the mean free path D is different in their respective

cementite layer: DC,Ref = 4.95 m and DC,sub = 3.54 m. Assuming very low initial dislocation density

in cementite (0 = 1. 1012 m-2), the fit process leads to k2 = 2.285 (reference steel) and  k2 = 3.187

(substitute alloy), respectively.  These hardening laws present at small strains a yield increase from 4

GPa up to 4.5 GPa, followed by a plateau at larger strains, as outlined in Fig. 9.left.

5. Nanoscale homogenisation

The characterization of both steel grades reveals that the size of the MnS inclusions (d = 0.132 m2)

in the ferrite matrix of the reference steel and of the NbC inclusions (d = 0.216 m2) in the substitute

matrix is an order of magnitude smaller than the mean size (d  17 m2) of ferrite or pearlite grains,

while the larger CeS inclusions in the substitute grade are of the same magnitude. Therefore, a three-

level homogenization scheme is adopted, where at the lowest scale (nano) a) the pearlite bi-lamella

formed of ferrite and cementite,  b) the 18CrNiMo7-6 ferrite matrix, containing MnS particles, and

c) the substitute ferrite matrix, dotted with small NbC carbides, are homogenized separately. 

5.1. Effective mechanical properties of pearlite in both steel grades

5.1.1 Effective elastic properties of pearlite  

The geometry of the bi-lamella RVE’s is shown in Fig. 9.right. The thickness, width and length

of these bi-lamella pearlite RVE’s are outlined in table 3. Both simple RVE’s are meshed with 7200

linear hexahedral elements and 3D periodic boundary conditions are applied. Adopting the Isaichev

orientation  relationship  between  the  cementite  and  ferrite  phases,  the  1st order  asymptotic

homogenization with HOMAT v6.0 [32] provides following Hooke matrix (in GPa) of the pearlite

of the 18CrNiMo7-6 steel in the local axis system e1, e2, e3 of Fig 9.right (Voigt notation):

H ref
eff  =|

310.65 91.23 96.45
91.23 304.64 104.56
96.45 104.56 297.68

−10.13 −10.12 7.19
2.10 14.41 16.27
8.26 −4.41 −24.14

−10.13 2.10 8.26
−10.12 14.41 −4.41

7.19 16.27 −24.14

66.74 −20.58 11.20
−20.58 77.10 −11.46
11.20 −11.46 75.02

| (15)

This result is meaningful:  pearlite exhibits  an anisotropic elastic behaviour with extension-shear

coupling,  due to the rotation  of the cubic properties  of the ferrite  lamella  in the cementite  axis

system.  From  this  Hooke  matrix  and  the  analogous  one  for  the  substitute  pearlite,  effective

orthotropic engineering constants (in GPa) and their mean values are derived in the local cementite

axis system and reported in table 9. Fig. 10 shows the normal projections of the effective Hooke

matrix of pearlite. This representation emphasises that pearlite has a quasi-cubic anisotropy due to

the large influence of the cubic ferrite layer. 

Table 9: Effective orthotropic and mean Young and shear modules [GPa] for both steel grades.



Steel E1 E2 E3 Em G12 G13 G23 Gm

Ref. 259.63 243.48 230.53 244.55 66.93 67.69 58.94 64.52

Subst. 261.28 245.03 231.96 246.09 67.31 68.14 59.26 64.90

Independent  of  the  steel  grade,  the  Young’s

modulus  in  thickness  direction  E3 is  smaller  than

both  in-plane  moduli  E1 and  E2 with  E3-m,ref =  -

5.73%  and   E3-m,sub  =  -5.74%,  respectively.  Its

shear stiffness is more anisotropic with G13 > G12 >

G23:  G23-m,ref   =  -8.64%  ;  G23-m,sub   =   -8.69%.

However, due to the large presence of cubic ferrite

this anisotropy is substantially less pronounced for

pearlite  than  for  the cementite  layer:  G23-m,ref   =-

68.06%.  

Fig.  10:  Normal  projections  of  the  effective

Hooke  tensor  of  pearlite  in  the  local  axis

system e1, e2, e3.

5.1.2 Effective elasto-plastic behaviour of pearlite

In order to derive the effective elasto-plastic constitutive laws of the eutectic pearlite virtual uniaxial

tensile and shear tests are performed on the same discretized bi-lamella for both steel grades.  In Fig.

11.left the predicted effective elasto-plastic flow curves are drawn for the uniaxial tensile test in the

in-plane e1 direction (Fig. 9.right). Independently of the pearlite design, both effective flow curves

present a strong change in hardening when cementite begins also to yield. In fact, initial yielding

occurs in the ferrite layer; whereas the cementite layer continues to deform elastically, leading to a

strong stress increase at small strains. Compared to the 18CrNiMo7-6 grade, the substitute grade has

a higher initial yield stress; whereas at large strains, its hardening increase is less pronounced. Note

that the pearlite hardening is mainly governed by the response of ferrite. 

The  flow curves  derived  from the  virtual  uniaxial  tensile  and  shear  tests  are  reported  on  Fig.

11.right. The pearlite phase has  an orthotropic elasto-plastic behaviour, where the in-plane flow

curves (e1 and e2 directions) exhibit a stronger hardening than the flow curve in thickness direction

e3: Hxx > Hyy > Hzz. The in-plane shear test provides an equivalent flow curve with a slightly reduced

hardening. However, this hardening is larger than the one deduced from the both out-plane shear

tests. For each effective flow curve of both steel grades, local stress ratios are evaluated at selected

plastic strains in the range [0. – 0.6] and then averaged. These main stress ratios are outlined in

Table 10.



Figure 11: Effective elasto-plastic stress-strain curves of pearlite: reference uniaxial tensile curve for

both steel grades (left); effective flow curves of substitute alloy derived from virtual uniaxial tensile

and shear tests (right).

Table 10: Derived mean stress ratios (Rij=
σ ij

Y

σ 0

 ; with σ ij
Y  the measured yield stress and σ 0=σ 11

Y ) of the

pearlite eutectoid in both steel grades.  

Steel R11 R22 R33 R12 R13 R23

Reference 1.0 0.9846 0.9372 0.9345 0.8873 0.8820

Substitute 1.0 0.9878 0.9531 0.9340 0.9091 0.9053

These  stress  ratio  results  show  that  the  18CrNiMo7-6  steel  grade  presents  a  stronger  yield

anisotropy than the substitute grade. Mainly its out-plane shear stress ratios R13 and R23 are lower

than the corresponding ratio of the substitute alloy.

5.2 Effective ferrite matrix of the 18rNiMo7-6 steel grade

The observed MnS inclusions (see Fig. 3.a) in the ferrite matrix of the reference alloy are more

compliant [33] and softer in plasticity [34] than the ferrite phase. At room temperature, their initial

yield stress Y is 88.2 MPa and at an equivalent plastic strain ϵ pl
=0.2, the equivalent stress reaches

130 MPa.  The ferrite matrix is described, as outlined in Sec. 4.2.1, by a generalized KME hardening

law (see Fig.8.left). A small RVE of 80 m3 extension is generated with the commercial program

Digimat-FE [35]. 3D periodic boundary conditions are imposed at its outer surface. It contains 28

small MnS spheres, having a volume fraction of 0.03875% and 15 slightly larger ellipsoids (V f =

0.09225%), which are randomly distributed within the RVE. Uniaxial virtual tensile test has been

performed on the discretized RVE. In Fig. 12.left the effective flow curve of the ferrite matrix dotted

with MnS particles,  the pure ferrite  flow curve and the elastoplastic  behaviour  of the MnS are

plotted. Obviously the stiffness and hardening reduction of the effective ferrite matrix is marginal.

The coefficients A, B and n of the Ludwik hardening law σ= A+B ϵ n, obtained by least-square fit,

quantify this  small hardening reduction of the 18CrNiMo7-6 ferrite matrix:  Ferrite + MnS: A =

258.20 MPa, B = 414.19, n = 0.5562; pure Ferrite: A = 258.41 MPa, B = 414.58 MPa, n = 0.5564. 



Figure 12: Elasto-plastic flow curves of the effective ferrite matrix of both steel grades: reference

18CrNiMo7-6 grade (left) and substitute grade (right). The flow curves of the corresponding pure

ferrite matrix and of the MnS inclusions are also shown.

5.3 Effective ferrite matrix of the substitute steel grade

The NbC carbides are stiff inclusions in the ferrite matrix of the substitute grade. They are cubic

with  C11 =  557.3  GPa;  C12 =  162.4  GPa;  C44 =  146.5  GPa  [36,  37],  have  a  noticeable  Zener

anisotropy  A
z
=

2C44

(C11−C12)
=0.74 and deform purely elastically  in our simulation.  The hardening

behaviour of the ferrite phase of the substitute grade is again described by the generalized KME law

(Eq. 10). A periodic RVE of extension 100  m3 is generated; it contains 9 randomly distributed

ellipsoids and 4 prismatic inclusions with a total volume fraction of Vf = 0.0213%, corresponding to

the  experimental  characterization.  Virtual  tensile  tests  are  then  performed on this  RVE. In Fig.

12.right the deduced effective elastoplastic flow curve as well as the flow curve of the ferrite matrix

of the substitute alloy are shown. From these curves the following Ludwig hardening coefficients

are derived by least-square fit: pure ferrite matrix: A = 243.41 MPa, B = 466.08 MPa, n = 0.4254;

effective matrix with NbC inclusions: A = 251.99 MPa, B = 469.12 MPa, n =0.4443. Even though

the  volume  fraction  of  NbC  carbides  is  small,  the  Ludwig  hardening  coefficients  increases

noticeably:   the  initial  yield  stress  A  by  

A = 3.52% and hardening exponent n by n = 4.45%.

6. Modelling and homogenization of both steel grades at the microscale

6.1 Model generation

Representative Volume Elements (RVE) of extension 150 m3 are generated for both steel grades at

the  microscale.  The  pearlite  content  of  each  RVE  varies  accordingly  to  the  experimental

characterization (see Table 2): 43% in the reference RVE and 54% in the substitute one. A Laguerre

tessellation is performed using Neper v3.5.1 [38] in order to generate ferrite-pearlite microstructures

for  each  steel  grade,  with  a  log-normal  grain  size  distribution,  which  respects  their  respective

average grain size: 31.16 m (ref.) and 16.51 m (subst.) (see Fig. 13). As the CeS inclusions are



large (DCeS = 37.45 m) and of the same size as the ferrite grains, three ferrite grains are converted

afterwards in CeS inclusions,  in order to respect their  volume fraction:  VCeS = 0.3217%  in the

substitute RVE. They deform elastically and have cubic symmetry [39] with C11 = 195.6 GPa, C12 =

26.51 GPa and C44 =75.595 GPa.  In both RVE’s the grains are randomly oriented. Neper uses Gmsh

[40]  to  generate  a  tetrahedral  volume mesh for  both  tessellations.  Then,  3D periodic  boundary

conditions and imposed displacements are applied to perform uniaxial tensile virtual tests. The two-

phase ref. model contains 986 grains, 365,960 linear tetrahedrons and 67,915 nodes; whereas the

three-phase subst. model is built of 1432 grains, which are meshed by 613,021 linear tetrahedral

elements and 116,184 nodes. 

Figure 12: Generated RVE’s: reference alloy (left); substitute steel (right). The coloured grains are

ferrite ones; whereas the dark ones are effective pearlite grains.

6.2 Effective macroscopic stress-strain curves of both steel grades  

Virtual uniaxial tests were performed with Abaqus Standard [41] for both specified RVE models in

order to derive their respective effective macroscopic elasto-plastic behaviour at room temperature.

Note that these macroscopic flow curves are obtained by volume averaging the micro-strains and -

stresses of each virtual test by fulfilling the Hill-Mandel condition [42]. In Fig. 13, the predicted

effective  flow curve  as  well  as  the  corresponding experimental  one  are  depicted  for  both  steel

grades.   Independent  of  the considered steel  grade,  both predicted  flow curves  exhibit  a  strong

change in their hardening behaviour, when the pearlite grains begin also to yield. This occurs when

the cementite and/or the cementite/ferrite boundary interlayer goes in an inelastic regime. 



Figure 13: Predicted effective elastoplastic curves and the corresponding quasi-static experimental

flow curves (ϵ̇=2.4 s−1) of the reference and substitute steels. 

Due to its higher pearlite content (54% vs. 43%) and its smaller mean grain size (17.2 m vs. 29.0

m) the substitute grade shows a stiffer equivalent hardening behaviour.  For the reference alloy, the

predicted flow curve exhibits stronger hardening than the corresponding experimental curve at small

plastic strains ( < 0.08); whereas for the substitute steel grade, the hardening increase of the RVE

model underestimates slightly the hardness in the experiment one in the range [0.06    0.27].

Overall, an excellent agreement of the hardening behaviour with the experimental one is observed

for  both  steel  grades  at  larger  strains  ( >  0.3),  which  is  the  relevant  range in  the  subsequent

machining step. 

6.3   Effective kinematic hardening behaviour of both steel grades

To  complete  the  elastoplastic  homogenization  of  the  investigated  ferrite-pearlite  steel

microstructures, their impact on the effective kinematic hardening behaviour of each steel grade is

determined here. To perform this investigation, the rather simple model of Allain-Bouaziz [17] is

adopted here to express the macroscopic internal stresses X in function of the equivalent plastic

strain  ϵ pl. In their model, the total internal stress is the sum of two contributions: X’ the internal

stress due to deformation incompatibility between ferrite and pearlite (a mixing term) and X’’ a

contribution  resulting  from the  intrinsic  kinematic  hardening  of  pearlite,  which  depends  on  its

interlamellar spacing . The total internal stress X is given by expression (16):

X (ϵ pl
)=X '

+X ' '
=(1− f pearl ) f pearl ∆ σ (ϵ pl

)+ f pearl
A

√❑
[1−exp(−Q ϵ pl ) ]          (16)

where f pearl is the volume fraction of pearlite, ∆ σ (ϵ pl ) the yield stress difference between effective

pearlite and ferrite, A and Q are material parameters, determined experimentally [17]: A= 0.185

MPa.√m and Q = 185. 

    In Figure 14 are drawn the variation of the total internal stress X, the mixing contribution X’ and

the  intrinsic  pearlitic  contribution  X’’  for  the  two investigated  steel  grades.  Independent  of  the

grade, after a strong increase of the internal stress at small strains (ϵ pl<0.04), the slope of the curves

changes drastically due to begin of the inelastic behaviour of the cementite phase. The evolution of



the mixing and subsequently of the total internal stress is different for both steel grades: for the

reference 18CrNiMo7-6 alloy, X’ and X continue to growth slowly and reach a stress plateau at

large strains (ϵ pl>0.4); whereas for the substitute grade they present a max. at  ϵ pl=0.18 and then

decrease slowly. This different behaviour is due to  the larger kinematic recovery coefficients k2  ,

identified for the ferrite phase of the substitute grade (matrix and ferrite layer of pearlite), than those

for  the  reference  alloy  (see  tables  7  and  8  and  fig.  8).  Eventually,  both  intrinsic  pearlitic

contributions X’’ saturate rapidly at ϵ pl>0.1 but at a different level: X’’=143.77 MPa (reference) and

X’’=188.40 MPa (substitute).  Compared to the reference value,  an increase of 31% is observed,

which is due to the smaller interlamellar spacing of the substitute pearlite.  

Figure 14: Variation of the effective total  internal  stress X, the mixing contribution X’ and the

intrinsic pearlitic contribution X’’ as function of the plastic strain for the reference and substitute

alloys.

Conclusions

A multiscale approach, based on a two-level homogenisation scheme, is applied here successfully to

predict the effective elasto-plastic behaviour of two ferrite-pearlite gear steels, from the knowledge

of their microstructure and the properties of their constituents.  To efficiently describe the influence

of  the  characterized  microstructure  on  the  hardening  behaviour  of  both  gear  steel  grades,  an

extension of the physically based Delincé et al. KME model [11] has been developed by introducing

a nonlinear dependence of the mean free dislocation path D on the equivalent plastic strain. Based

on  a  sensitivity  analysis,  a  least-square  fit  with  an  experimental  stress-strain  curve  allows  to

determine the most relevant material parameters of the ferrite matrix and ferrite layer in pearlite. The

homogenisation  of  the  pearlite  bi-lamella  RVE  at  the  nanoscale  reveals  that  pearlite  has  a

pronounced effective anisotropic elasto-plastic behaviour caused by the anisotropy of the cementite

phase. Moreover, the homogenization of the ferrite matrix doted either with small MnS inclusions

(18CrNiMo7-6 grade) or NbC carbides (substitute grade) at the nanoscale allows for an efficient

homogenisation  of  the  ferrite-pearlite  microstructure  at  the  microscale  by  considering  there  the

ferrite  matrix  as a  homogeneous effective  phase.  The so numerically  derived macroscopic  flow

curves from the respective RVE micromechanical model of each steel grade constitute the basis for



the derivation of a generalized Johnson-Cook hardening law, used in cutting simulations in the 2nd

part of this work. 

To  improve  in  a  near  future  the  model  predictions  with  this  homogenisation  procedure,  more

delicate experimental  characterisation,  compression tests at different  strain rate and temperatures

and an inverse modelling strategy has to be applied in order to tackle unknown micromechanical

model  parameters  of  each  phase  (0,  C_SS,  w,  *,  …)  and  to  quantify  their  strain  rate  and

temperature dependence. 
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