000910748 001__ 910748
000910748 005__ 20230626065456.0
000910748 0247_ $$2doi$$a10.1007/s11128-022-03476-y
000910748 0247_ $$2Handle$$a2128/32329
000910748 0247_ $$2WOS$$aWOS:000777119700001
000910748 037__ $$aFZJ-2022-04118
000910748 082__ $$a004
000910748 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj
000910748 245__ $$aBenchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems
000910748 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2022
000910748 3367_ $$2DRIVER$$aarticle
000910748 3367_ $$2DataCite$$aOutput Types/Journal article
000910748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667476426_8821
000910748 3367_ $$2BibTeX$$aARTICLE
000910748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910748 3367_ $$00$$2EndNote$$aJournal Article
000910748 520__ $$aWe benchmark the quantum processing units of the largest quantum annealers to date, the 5000+ qubit quantum annealer Advantage and its 2000+ qubit predecessor D-Wave 2000Q, using tail assignment and exact cover problems from aircraft scheduling scenarios. The benchmark set contains small, intermediate, and large problems with both sparsely connected and almost fully connected instances. We find that Advantage outperforms D-Wave 2000Q for almost all problems, with a notable increase in success rate and problem size. In particular, Advantage is also able to solve the largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore. Furthermore, problems that can still be solved by D-Wave 2000Q are solved faster by Advantage. We find, however, that D-Wave 2000Q can achieve better success rates for sparsely connected problems that do not require the many new couplers present on Advantage, so improving the connectivity of a quantum annealer does not per se improve its performance.
000910748 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910748 536__ $$0G:(EU-Grant)820363$$aOpenSuperQ - An Open Superconducting Quantum Computer (820363)$$c820363$$fH2020-FETFLAG-2018-03$$x1
000910748 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b1$$ufzj
000910748 7001_ $$0P:(DE-Juel1)171436$$aGonzalez Calaza, Carlos Daniel$$b2$$ufzj
000910748 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b3$$ufzj
000910748 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b4$$ufzj
000910748 7001_ $$0P:(DE-HGF)0$$aSvensson, Marika$$b5
000910748 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b6$$ufzj
000910748 773__ $$0PERI:(DE-600)2088114-9$$a10.1007/s11128-022-03476-y$$p141$$tQuantum information processing$$v21$$x1570-0755$$y2022
000910748 8564_ $$uhttps://juser.fz-juelich.de/record/910748/files/Willsch2022_Article_BenchmarkingAdvantageAndD-Wave.pdf$$yOpenAccess
000910748 8767_ $$d2022-01-18$$eHybrid-OA$$jDEAL
000910748 909CO $$ooai:juser.fz-juelich.de:910748$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b1$$kFZJ
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171436$$aForschungszentrum Jülich$$b2$$kFZJ
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b3$$kFZJ
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b4$$kFZJ
000910748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b6$$kFZJ
000910748 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910748 9141_ $$y2022
000910748 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910748 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910748 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-02$$wger
000910748 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910748 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910748 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM INF PROCESS : 2021$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910748 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000910748 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910748 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910748 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910748 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000910748 920__ $$lyes
000910748 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000910748 9801_ $$aFullTexts
000910748 980__ $$ajournal
000910748 980__ $$aVDB
000910748 980__ $$aUNRESTRICTED
000910748 980__ $$aI:(DE-Juel1)JSC-20090406
000910748 980__ $$aAPC