001     910749
005     20230123110718.0
024 7 _ |a 10.1016/j.cpc.2022.108411
|2 doi
024 7 _ |a 0010-4655
|2 ISSN
024 7 _ |a 1386-9485
|2 ISSN
024 7 _ |a 1879-2944
|2 ISSN
024 7 _ |a 2128/32331
|2 Handle
024 7 _ |a WOS:000831314600011
|2 WOS
037 _ _ |a FZJ-2022-04119
082 _ _ |a 530
100 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 0
|e Corresponding author
|u fzj
245 _ _ |a GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm
260 _ _ |a Amsterdam
|c 2022
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671711031_17992
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly optimization procedure altogether. Furthermore, we study the scaling of the success probability when using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error scales most favorably, surpassing the best result obtained from the QAOA.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 1
|u fzj
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-Juel1)179169
|b 4
|u fzj
773 _ _ |a 10.1016/j.cpc.2022.108411
|g Vol. 278, p. 108411 -
|0 PERI:(DE-600)1466511-6
|p 108411
|t Computer physics communications
|v 278
|y 2022
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/910749/files/Invoice_OAD0000207776.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910749/files/1-s2.0-S0010465522001308-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910749
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179169
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21