Hauptseite > Publikationsdatenbank > GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm > print |
001 | 910749 | ||
005 | 20230123110718.0 | ||
024 | 7 | _ | |a 10.1016/j.cpc.2022.108411 |2 doi |
024 | 7 | _ | |a 0010-4655 |2 ISSN |
024 | 7 | _ | |a 1386-9485 |2 ISSN |
024 | 7 | _ | |a 1879-2944 |2 ISSN |
024 | 7 | _ | |a 2128/32331 |2 Handle |
024 | 7 | _ | |a WOS:000831314600011 |2 WOS |
037 | _ | _ | |a FZJ-2022-04119 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Willsch, Dennis |0 P:(DE-Juel1)167542 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm |
260 | _ | _ | |a Amsterdam |c 2022 |b North Holland Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1671711031_17992 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly optimization procedure altogether. Furthermore, we study the scaling of the success probability when using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error scales most favorably, surpassing the best result obtained from the QAOA. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Willsch, Madita |0 P:(DE-Juel1)167543 |b 1 |u fzj |
700 | 1 | _ | |a Jin, Fengping |0 P:(DE-Juel1)144355 |b 2 |u fzj |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |u fzj |
700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-Juel1)179169 |b 4 |u fzj |
773 | _ | _ | |a 10.1016/j.cpc.2022.108411 |g Vol. 278, p. 108411 - |0 PERI:(DE-600)1466511-6 |p 108411 |t Computer physics communications |v 278 |y 2022 |x 0010-4655 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910749/files/Invoice_OAD0000207776.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910749/files/1-s2.0-S0010465522001308-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:910749 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167542 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167543 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144355 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)179169 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-18 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT PHYS COMMUN : 2021 |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-18 |
915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2022-11-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|