
Computer Physics Communications 278 (2022) 108411

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

GPU-accelerated simulations of quantum annealing and the quantum

approximate optimization algorithm ✩

Dennis Willsch a,∗, Madita Willsch a,b, Fengping Jin a, Kristel Michielsen a,b,c,
Hans De Raedt a,d

a Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
b AIDAS, 52425 Jülich, Germany
c RWTH Aachen University, 52056 Aachen, Germany
d Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2021
Received in revised form 4 May 2022
Accepted 5 May 2022
Available online 10 May 2022

Keywords:
Quantum computing
Quantum annealing
Approximate quantum annealing
QAOA
High performance computing
Computer simulation
Parallelization

We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich
universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster
with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum
annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very
coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly
well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly
optimization procedure altogether. Furthermore, we study the scaling of the success probability when
using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error
scales most favorably, surpassing the best result obtained from the QAOA.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The simulation of universal quantum computers requires a large
number of matrix-vector updates, most of which are 2-component
and 4-component tensor operations. As such, the task of simulat-
ing quantum computers is an ideal candidate to profit from recent
developments in the GPU industry. We use a GPU-accelerated ver-
sion of our in-house software JUQCS [1,2], termed JUQCS–G, to
benchmark JUWELS Booster, a cluster of 3744 NVIDIA A100 Tensor
Core GPUs, integrated in the modular supercomputer JUWELS [3].
A dockerized version of JUQCS is available online [4].

JUWELS Booster is part of the JUWELS cluster-booster architec-
ture at the Jülich Supercomputer Centre (JSC) in which a cluster
of multi-core nodes is connected via a high-speed network to a
cluster of GPUs, the booster, which forms the basis of the modu-
lar supercomputer at JSC. The modular supercomputer architecture
generalizes the cluster-booster concept by potentially interconnect-
ing a variety of modules with, among others, different acceleration
technologies, AI-adapted nodes and storage devices. The modu-

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
E-mail address: d.willsch@fz-juelich.de (D. Willsch).
https://doi.org/10.1016/j.cpc.2022.108411
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
lar supercomputer concept allows for a seamless integration of
quantum computing architectures and future neuromorphic sys-
tems to realize the vision of a holistic future hybrid supercomputer
[5]. Such a system enables hybrid simulations involving quan-
tum and/or neuromorphic devices that open up new possibilities
for demanding computing tasks in science and industry. This will
eventually allow for hybrid computing paradigms in a production
environment.

JUQCS is a massively parallel simulator [1,2,4,6] that has also
been used for Google’s quantum supremacy demonstration [7].
Using JUQCS–G, we study the quantum approximate optimiza-
tion algorithm (QAOA) [8,9], a popular variational algorithm for
near-term gate-based quantum computers, also known as noisy
intermediate-scale quantum (NISQ) devices [10]. The prospect of
producing useful results for NISQ devices has stimulated consider-
able interest in the scientific community [11–23].

The QAOA simulations, which were performed on the JUWELS
Booster, used the CPUs to carry out the classical (optimization)
part of the QAOA and the GPUs to carry out the quantum part
formulated in terms of a quantum circuit. On the modular super-
computer architecture with a quantum module, the optimization
could be performed on the CPUs of the JUWELS cluster or booster
and the operations in the quantum circuit on the QPUs (quantum
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.cpc.2022.108411
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108411&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.willsch@fz-juelich.de
https://doi.org/10.1016/j.cpc.2022.108411
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411

Fig. 1. Distribution of the complex amplitudes of the state vector |ψ〉 on the GPUs across the compute nodes. Each GPU is handled by one MPI process. For each GPU,
the leftmost qubit indices of the coefficients (the global qubits, separated from the local qubits by a space) represent the MPI rank that uniquely identifies the GPU in the
supercomputer. This is indicated for the GPUs belonging to MPI rank 0 and 3 for a case with 10 global qubits. On each GPU, the complex amplitudes for each index of the
remaining local qubits are stored. During non-local quantum gate operations, typically half of all complex amplitudes need to be transferred once between NGPU/2 pairs
of GPUs (often across different compute nodes). For these transfers, the MPI communication scheme of JUQCS–G follows the original one described in [6], with the only
qualitative change being that a CUDA-aware MPI implementation is used to transfer memory between the GPUs.
processing unit), enabling efficient quantum-classical hybrid com-
putations.

The QAOA can be related to a discretized version of quantum
annealing (QA) [14,19,24,25]. QA is another popular paradigm of
quantum computation [26–35] that is studied alongside the gate-
based model of quantum computation [36]. Special devices built to
perform QA are the D-Wave quantum annealers. The largest exist-
ing quantum annealer is the D-Wave Advantage, which has 5000+
physical qubits [37] and has been used for quantum support vector
machines [38,39] (see also [40]), in studies of stock markets [41],
for computer vision [42], and for lattice gauge theory [43]. It has
recently been benchmarked with 3D spin glass problems [44], gar-
den optimization problems [45] and exact cover problems [46]. In
the present work, the same exact cover problems as in Ref. [46],
derived from simplified optimization problems encountered in air-
plane scheduling, are used to analyze the large-scale simulation
results produced by different physical models designed to solve
such problems.

In this paper, we scrutinize the overlapping region between
QA and the QAOA. We start from a coarse, second-order time-
discretization of QA that we call approximate quantum annealing
(AQA). We increase the time step that controls the discretization
error (sometimes referred to as the Trotter error [47,48], although
the formalism goes well beyond Trotter’s investigation [49], see
[50–52]). Furthermore, we use JUQCS–G to study the scaling of
the success probability when using AQA for exact cover problems
with 30 to 40 qubits. Surprisingly, we find that, while the cases
with smaller discretization error provide useful initializations for
the QAOA, the cases with largest discretization error scale much
better when increasing the number of qubits.

Ideas that are similar to AQA have been investigated before [19,
24,25,53]. In particular, in [25] a first-order discretized version
of QA, referred to as Trotterized quantum annealing, was used as
initialization for the QAOA. The authors studied the performance
for p ≤ 10 QAOA steps and relatively small systems with N ≤ 12
qubits. Here, we study a second-order discretization of QA. We
study not only the QAOA initialization but also the dynamics of
AQA. Furthermore, we consider much larger systems with up to
N = 40 qubits and up to n = 100 steps (corresponding to p = 101).

While it is almost trivial to simulate short QAOA gate circuits
for less than 26 qubits on a modern PC, simulating the fairly
lengthy circuits (5000+ gates) for the 40 qubits exact cover prob-
lems requires substantial supercomputer resources (and more than
16TB of random access memory). The GPU-enabled software that
we have developed in house enables us to perform such simu-
lations in a reasonable time span. Having data for 30–40 qubits
allows us to assess the potential, e.g. the scaling behavior, of the
2

QAOA and AQA in a regime that was previously inaccessible (in
practice).

This paper is structured as follows. In Section 2, we describe the
GPU-accelerated universal quantum computer simulator JUQCS–G
and show benchmarks of JUWELS Booster. In Section 3, we present
applications to QA, AQA, and the QAOA. We summarize our find-
ings in Section 4.

2. JUQCS–G

In this section, we outline the central task performed by univer-
sal quantum computer simulators such as JUQCS in general, and
its GPU-accelerated version JUQCS–G in particular. After this, we
present benchmark results for JUWELS Booster.

2.1. Simulating quantum computers on GPUs

The basic unit of computation for a gate-based quantum com-
puter is a single qubit, described by two complex numbers |ψ〉 =
(ψ0, ψ1) that are normalized so that 〈ψ |ψ〉 = |ψ0|2 + |ψ1|2 = 1. By
definition, an N-qubit system is described by 2N complex numbers

|ψ〉 = ψ0...00 |0 . . . 00〉 + ψ0...01 |0 . . . 01〉 + . . .

+ψ1...11 |1 . . . 11〉 , (1)

where |0 . . . 00〉 , . . . , |1 . . . 11〉 are the computational basis states
[36] and the coefficients ψ0...00, . . . , ψ1...11 are normalized such
that 〈ψ |ψ〉 = 1. For clarity, we explicitly write the 2N complex
coefficients in the state |ψ〉 as a rank-N tensor ψqN−1···q1q0 with
indices q j ∈ {0, 1}. In other words, an N-qubit system is described
by a complex-valued, rank-N tensor, a tensor product of N two-
dimensional vectors.

For large-scale universal quantum computer simulations, the
main difficulty lies in the management of all 2N complex num-
bers. For instance, for N = 42 using double precision floating-point
numbers, the tensor ψqN−1···q1q0 occupies 16 × 242 B = 64 TiB of
distributed memory.

JUQCS–G distributes the complex numbers over the memory of
the GPUs as indicated in Fig. 1. Each GPU stores 2M coefficients
of |ψ〉 in its local memory, i.e., each GPU stores the coefficients
(ψqN−1···qM 0···0, . . . , ψqN−1···qM 1···1). For this reason, we call the right-
most M qubits qM−1 · · ·q0 local qubits. As a consequence, the total
number of required GPUs is given by NGPU = 2N−M .

Since the complex numbers are distributed over multiple GPUs
on different compute nodes, data has to be transferred over the
network. This is necessary, for instance, if a particular part of the
data on one node is required for the computation on another node.
To exchange data between the GPUs on different compute nodes,

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
the Message Passing Interface (MPI) is used. MPI provides a standard
for distributed memory computation and takes care of the commu-
nication, i.e., the sending and receiving of data between different
compute nodes. For details, we refer the reader to the literature
[54].

JUQCS–G uses CUDA-aware MPI to manage the distributed
memory. Each GPU is controlled by one MPI process, whose rank
r ∈ {0, . . . , NGPU − 1} is initially given by the leftmost N − M in-
dices of |ψ〉 in binary notation. Thus, the GPU with rank bin(r) =
qN−1 · · ·qM holds the coefficients (ψbin(r)0···0, . . . , ψbin(r)1···1). For
this reason, we call the leftmost N − M qubits global qubits.

A quantum gate is a unitary operation that transforms some
of the coefficients of |ψ〉. The most elementary quantum gate is a
single-qubit gate, i.e., a 2 × 2 unitary matrix U = (uqq′). It trans-
forms the coefficients of |ψ〉 in terms of 2-component updates. For
instance, a single-qubit gate on qubit j transforms the tensor |ψ〉
according to

ψqN−1···q j+1qq j−1···q0 ←
1∑

q′=0

uqq′ψqN−1···q j+1q′q j−1···q0 , (2)

for q = 0, 1. Similarly, a two-qubit gate is a 4 × 4 unitary matrix
that operates on two indices of |ψ〉, and a three-qubit gate op-
erates on three indices, etc. A suitable set of one- and two-qubit
gates suffices to construct a universal quantum computer (simula-
tor) [55,56]. The set of quantum gates implemented by JUQCS–G is
documented in [1].

We do not use sparse matrix techniques but exploit the spe-
cial structure of single-, two- and three-qubit operations. We never
store or operate on large dense matrices. To perform 2-component
updates as expressed in Eq. (2), we loop over all pairs of elements
of |ψ〉 and multiply each pair of elements with the same 2 ×2 ma-
trix (which depends on the particular gate). The grouping in pairs
depends on the qubit that is being operated on. For the two-qubit
operations, we loop over quadruples of elements of |ψ〉 and multi-
ply each quadruple of elements with the same 4 ×4 matrix (which
depends on the particular gate). The time it takes to perform all
these arithmetic operations is counted as “compute time”. As the
size of the quantum computer increases, we need more and more
compute nodes to store |ψ〉, and although the MPI communication
is very efficient by itself, it takes an increasingly larger part of the
elapsed time (but still scales approximately linearly, not exponen-
tially).

If a quantum gate acts on a global qubit, coefficients of |ψ〉 that
are stored on different GPUs need to be combined with each other.
This requires MPI communication between the GPUs. For circuits
with many quantum gates involving global qubits, the MPI com-
munication may take a large part of the simulation time (cf. Fig. 3
below). For instance, a single-qubit gate on a global qubit requires
the transfer of 2N/2 complex numbers (i.e., half of all memory)
between pairs of GPUs. JUQCS–G minimizes the communication
overhead by relabeling global and local qubits after such a global
quantum gate. Thereby, the complex numbers need to be trans-
ferred over the network only once, and not back again after the
transformation. Each GPU keeps track of the labeling of global and
local qubits in a local permutation array. Further details of this op-
timal MPI communication scheme are explained in [6].

The keyword in the large-scale simulations performed by JUQCS
is universal. It means that any quantum circuit for an N-qubit sys-
tem can in principle be simulated, as long as the circuit depth is
not unreasonably long (unreasonably because then it would also
not be executable on a gate-based quantum computer device). In
the literature, this kind of simulation method is sometimes re-
ferred to as the Schrödinger simulation method, because the whole
tensor ψqN−1···q1q0 (i.e., the whole wave function |ψ〉) is propagated
3

through the quantum circuit. The simulation time grows linearly in
the total number of gates.

In contrast to the Schrödinger simulation method, there is also
the so-called Feynman simulation method [57–62]. Here, tensor net-
works are used to obtain only one (or a few) amplitude(s) of the
final quantum state. One then sums over each path through the
quantum circuit that would contribute to this amplitude. In prin-
ciple, much larger qubit systems can then be simulated (e.g., a
128-qubit circuit was simulated in [2]). Of course, the kinds of cir-
cuits that can be simulated by such an approach are very restricted
and not universal. The simulation time grows exponentially in the
circuit depth and depends strongly on the number of Schmidt co-
efficients of multi-qubit gates (see the supplementary material of
[7]). However, truncating Schmidt coefficients opens the possibility
to simulate circuits with smaller fidelity. An overview of the limits
of such simulations is given in [63].

A combination of both Schrödinger and Feynman approaches
can be used to simulate larger circuits of the quantum supremacy
experiment [7], and has recently been used on a cluster of GPUs
to spoof the quantum supremacy test [64].

2.2. Benchmarks and scalings

The large amount of MPI communication required for simulat-
ing universal quantum computations makes simulating quantum
computers an ideal candidate to benchmark large supercomput-
ers. Combined with the many tensor operations required (cf. Sec-
tion 2.1), JUQCS–G is a very versatile application to benchmark
Tensor Core GPUs. In this section, we report benchmark results for
JUQCS–G running on JUWELS Booster, a cluster with 3744 NVIDIA
A100 Tensor Core GPUs distributed over 936 compute nodes (see
Fig. 1).

Each A100 GPU has a local memory of 40 GiB, so the maximum
number of local qubits is 31. For quantum circuits with N ≥ 32
qubits, MPI communication between the GPUs is necessary. For the
present benchmark study, we simulate quantum circuits for 32–42
qubits on 2–2048 GPUs.

In Fig. 2, we show simulation results for QAOA circuits for
32–40 qubit exact cover problems (the details of which are de-
scribed in the following section). We see that the computation
time (i.e., the run time excluding the time required for the MPI
communication) stays approximately constant with increasing sys-
tem size, indicating ideal weak scaling. The MPI communication
time increases roughly linearly. Most importantly, none of these
simulation times grow exponentially in the number of qubits. In
this sense, JUQCS–G beats the exponential growth associated with
quantum circuit simulations.

To compare timing data of different runs of problems belong-
ing to the same class, it is expedient to express this data in a way
that takes into account that the number of gates depends on the
problem size N . In the present case, we take the number of gates
ngates(32) for the smallest corresponding problem instance as ref-
erence and define

Normalized elapsed time = ngates(32)

ngates(N)
Telapsed(N) . (3)

Studying the strong scaling results for 34 qubits, we find ideal
strong scaling. As the number of GPUs increases, the normalized
elapsed time decreases exponentially. When doubling the number
of GPUs used, the normalized elapsed time is (almost perfectly)
halved.

Looking closely at the 40-qubit strong scaling results in Fig. 2
(rightmost bars), we see that the drop in simulation time from 512
to 1024 GPUs is in fact better than expected. For perfect strong
scaling, we would expect the simulation time to decrease by a
factor of 2 when doubling the number of GPUs (in practice, this

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411

Fig. 2. Weak and strong scaling results for QAOA on JUWELS Booster using 4 NVIDIA A100 GPUs per node. Shown is the normalized elapsed time given by Eq. (3) as a
function of the number of GPUs. The problem size given by the number of qubits and the memory per GPU are indicated on the bottom axis. “Compute” refers to the elapsed
time for executing the quantum circuit only. “MPI” refers to the elapsed time for communication plus the elapsed time to prepare and postprocess MPI buffers. There is no
overlap between computation and communication. (For interpretation of the colors in the figure(s) and table(s), the reader is referred to the web version of this article.)

Fig. 3. The same as Fig. 2 but for the Hadamard benchmark circuits (H⊗N)11 . In this case, the largest runs for 40–42 qubits were repeated several times to estimate the
fluctuations due to different node allocations; they were on the order of 1 second and thus negligible (data not shown). “Compute” refers to the elapsed time for executing
the quantum circuit only. “MPI” refers to the elapsed time for communication plus the elapsed time to prepare and postprocess MPI buffers. There is no overlap between
computation and communication.
decrease would be expected to be even a little less). Going from
512 to 2048 GPUs, i.e., using 4 times as many GPUs, brings the
normalized elapsed time down by almost a factor of 4 as expected.
This holds for the computing time as well as for the MPI com-
munication time. However, we observe that the time needed with
1024 GPUs is only a third of the time needed with 512 GPUs, so
much better than the theoretical optimum. Note that the unex-
pected behavior can be attributed to the MPI communication part
only. Considering only the computing time, we still observe the ex-
pected scaling. As this run was performed in October 2020 during
the early testing period of JUWELS Booster, we assumed that an
explanation for the behavior might be found in an irregularity in
the DragonFly+ topology of the communication network.

Therefore, we repeated the large-scale benchmark in February
2021 after JUWELS Booster went into production. This time, we
used quantum circuits consisting only of Hadamard gates on each
qubit, repeated 11 times in a row, (H⊗N)11. Such circuits have
been found to be well-suited for both benchmarking gate-based
quantum computers [65] and universal quantum computer simu-
lators [1]. They create uniform superpositions over all N qubits
4

and require exchanging 2N/2 complex numbers over the whole
GPU network for each global single-qubit H gate. Since the to-
tal number of gates as a function of N is not constant, we need
to make the benchmark results for different N relatable by nor-
malizing the run times w.r.t. the 32-qubit version. For instance,
as the 32-qubit circuit has 352 H gates and the 42-qubit circuit
has 462 H gates, the corresponding normalization factor is given
by 462/352 ≈ 1.31. The 11-fold repetition of the Hadamard gates
makes potential GPU/CUDA/MPI initialization times negligible.

The results of this second benchmark are shown in Fig. 3. We
see that in this case, the computation times show nearly ideal scal-
ing, i.e., the elapsed time for increasing qubit number and number
of used GPUs stays approximately constant (ideal weak scaling)
and for constant qubit numbers, doubling the number of used
GPUs halves the computation time (ideal strong scaling) in the
34-qubit case as well as in the 40-qubit case. Also for the MPI
communication time, the results follow the theoretical expectation.

To compare the speedup over the CPU-based version of JUQCS,
JUQCS–E [1], we also report results for the normalized run times

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Table 1
Comparison of the GPU-based simulator JUQCS–G (first row) and the CPU-based
simulator JUQCS–E [1] (second to last row) for the largest systems using the
Hadamard benchmark circuits (H⊗N)11 . The time ttotal is the run time spent for
the total simulation, normalized by the number of gates with respect to the 32-
qubit case (see Eq. (3)). The time tMPI is the elapsed time for communication plus
the elapsed time to prepare and postprocess MPI buffers. JUQCS–E uses all cores of
the CPUs on each node.

qubits nodes processes hardware normal. ttotal [s] tMPI [s]

42 256 1024 GPU 1.31 149.4 122.1
42 256 2048 CPU 1.31 2632.4 1297.7
42 512 4096 CPU 1.31 1500.4 763.4
43 512 4096 CPU 1.34 2714.4 1343.3

for the largest circuits in Table 1 using only CPUs. In this mode of
operation, JUWELS Booster can also run 43-qubit circuits.

For the 42-qubit case, we see that the normalized run time on
2048 CPUs, ttotal = 2632.4 s, is a factor of 18 larger than the GPU-
accelerated version with ttotal = 149.4 s (also shown in Fig. 3).
Furthermore, after subtracting the MPI communication time tMPI,
the speedup due to the GPU acceleration for the computation-
only part is 49. This is a very significant improvement in terms of
the computational resources required for the simulations. Clearly,
large-scale quantum circuit simulations can tremendously benefit
from recent GPU developments.

3. Applications

In this section, we use JUQCS–G to study the quantum com-
puter applications QA, AQA, and the QAOA. The QAOA work pre-
sented is, in spirit, similar to the work reported in Ref. [14]. How-
ever, the largest optimization problems (16 variable MaxCut and
18 variable 2-SAT) studied in Ref. [14] are much smaller (recall the
exponential dependence on the number of variables) than the 40-
variable exact cover problems studied in the present manuscript.

We first outline the mathematical background and its imple-
mentations, and then present the simulation results.

3.1. Background

In this section, we discuss the methods that we used in our
studies. First, we briefly review the most important aspects of QA
and the QAOA in Sections 3.1.1 and 3.1.2, respectively. The defini-
tion of the exact cover problem, which is the class of problems
that we study in this paper, is given in Section 3.1.3.

3.1.1. Quantum annealing
QA was initially intended as an algorithm for conventional com-

puters [26–28]. Over time, it has evolved into the idea of a quan-
tum computing device that works fundamentally different from
the gate-based quantum computer.

The concept of QA is based on the adiabatic theorem [67,68].
For this reason, a QA device is also called adiabatic quantum com-
puter. Although slightly different concepts are sometimes asso-
ciated with QA and adiabatic quantum computation, the basic
working principle is the same: The quantum system (consisting of
qubits) is prepared in the ground state of an initial Hamiltonian
such as

H I = −
N−1∑
i=0

σ x
i , (4)

whose ground state is given by |ψinit〉 = |+〉⊗N where |+〉 = (|0〉 +
|1〉)/√2 is the uniform superposition of |0〉 and |1〉. During the
time evolution, the Hamiltonian changes according to
5

Fig. 4. Annealing schedule of the DW_2000Q_6 quantum annealer, taken from [66].
The annealing functions A(s) (blue line) and B(s) (yellow line) describe the evolu-
tion of the QA Hamiltonian given in Eq. (5).

H(s) = A(s)H I + B(s)HC , s = t/tanneal, (5)

where tanneal is the time used for the annealing process, and the
two annealing functions A(s) and B(s) fulfill A(0)
 B(0) and
A(1) � B(1). An example annealing schedule is shown in Fig. 4,
which is also used to initialize the variational QAOA parameters
(see below).

The final Hamiltonian in Eq. (5), HC , represents an optimization
problem that is to be solved. This means that the ground state of
HC encodes the solution of a certain optimization problem. Here,
we choose HC to be the Ising Hamiltonian

HC =
N−1∑
i=0

hiσ
z
i +

∑
i< j

J i jσ
z
i σ z

j . (6)

The idea is that if the annealing process described by Eq. (5)
is carried out at zero temperature and sufficiently slowly so that
the adiabatic theorem holds, then the quantum system stays in
its instantaneous ground state. Thus, at the end of the annealing
process, the quantum system ends up in the ground state of the
Hamiltonian HC . Measuring the qubits would then yield the an-
swer to the initial optimization problem.

In practice, on a quantum annealer not only the annealing time
tanneal determines the probability of success (i.e., the probability
that the system ends in its ground state and not in an excited
state), but also an environment at finite temperature, control errors
and precision limits have an influence on it [30,69–75].

3.1.2. The quantum approximate optimization algorithm
The QAOA was introduced by Farhi et al. [8]. It is a variational

method that is suitable for execution on a gate-based quantum
computer. The objective is to find the ground state (or a low en-
ergy state) of a problem Hamiltonian such as HC given by Eq. (6)
that represents an optimization problem. The state that is prepared
by the QAOA quantum circuit is given by

|β,γ 〉 =
p∏

k=1

e−iβk H D e−iγk HC |+〉⊗N , (7)

where γ = (γ1, ..., γp) and β = (β1, ..., βp) are the 2p variational
parameters that have to be optimized, and H D is a mixing Hamilto-
nian that is commonly chosen as H D = −H I (cf. Eq. (4)), i.e.,

H D =
N−1∑
i=0

σ x
i . (8)

Note that other choices have also been proposed [76,77].
It is worth mentioning that for this choice, the QAOA parame-

ters βk can be reduced to the range [0, π). For γk , however, such

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
a periodicity condition depends on the minimum spacing between
the eigenvalues of HC . In other words, the range of values for γk
depends on the particular problem instance defined by hi and J i j
(see below).

For a given number of steps p, the energy of the optimized
variational state (E∗

p = minβ,γ 〈β,γ | HC |β,γ 〉) is lower than the
energy of the optimized variational state with p − 1 steps [8].

However, it has been found that the optimization of the vari-
ational parameters can be rather inefficient. Therefore, one often
tries to use the observation that the optimal parameters βk and γk
seem to follow certain patterns [14,15,19,78–80]. Here, we investi-
gate these patterns in relation to QA and their interpretation as an
optimized annealing scheme (see also [14,19,25]).

3.1.3. Exact cover
The exact cover problem is an NP-complete problem [81] that

has become a popular choice to study optimization using quantum
computing systems [15–17,46,82–86]. Exact cover problems belong
to the class of set covering and partitioning problems that is cov-
ered in a vast amount of literature in Operations Research (see
e.g. [87,88]).

In this paper, we study the instances of exact cover problems
used in [46]. In matrix form, they are written as

min
xi=0,1

F−1∑
f =0

(
N−1∑
i=0

aif xi − 1

)2

, (9)

where a ∈ {0, 1}N×F is the Boolean problem matrix that defines the
exact cover instance, and xi are the problem variables. Intuitively,
the solution x ∈ {0, 1}N of Eq. (9) selects rows of a in such a way
that in each column of the selected rows, the entry 1 is covered
exactly once, and all other entries are 0.

We study exact cover problems with 30 to 40 variables (qubits)
and F = 472 terms. For each problem size, we have four different
instances. Problem instances are labeled by their qubit number and
an additional label from 0 to 3 in brackets, such as problem 30(0).

To find a problem Hamiltonian HC of the form of Eq. (6), whose
ground state represents the solution to Eq. (9), we replace the
problem variables according to

xi �→ (1 + σ z
i)/2. (10)

Denoting the −1 (+1) eigenstate of σ z
i as |0〉 (|1〉), we can rep-

resent the problem variable xi by the qubit state |xi〉. Thus, the
replacement Eq. (10) yields a diagonal Hamiltonian whose eigen-
values take all possible values of the objective function in Eq. (9).
Consequently, the ground state of HC (i.e., the state with minimum
eigenvalue) is the solution to Eq. (9). For this reason, we also de-
fine the success probability for these problems as the probability
to find the system in the ground state (note that for all problem
instances that we study in this paper, the ground state is unique
[46]).

After multiplying out the square, the Hamiltonian can be ex-
pressed in the form of Eq. (6) plus an additive constant C (see [46]
for the calculation), yielding

hi =
∑

j

1

2
(aaT)i j − (ab)i , (11)

J i j = 1

2
(aaT)i j , (12)

C = bT b + 1

2

∑
i< j

(aaT)i j + 1

2

∑
i

((aaT)ii − (2ab)i) , (13)

where b = (1, . . . , 1)T is an F -dimensional vector of ones.
6

As a and b in Eqs. (11)–(13) contain only zeros and ones, we
know that hi and J i j vary at most by half integers. Therefore, the
range of values for γk can be reduced to [0, 2π) (because γk �→
γk + 2π only causes a global phase in the QAOA state in Eq. (7)).

For all AQA and QAOA applications (except the grid scan in
Fig. 5 below), however, we rescale the parameters {hi}, { J i j} and
C to a uniform parameter range by dividing them by

r = max

{
max

[
max{hi}

hmax
,0

]
,max

[
min{hi}

hmin
,0

]
,

max

[
max{ J i j}

Jmax
,0

]
,max

[
min{ J i j}

Jmin
,0

]}
, (14)

where hmax = −hmin = 2 and Jmax = − Jmin = 1. Note that the
same normalization is also performed when solving such problems
on the D-Wave quantum annealer [46,89]. This does not change
the solutions of the problems. However, it brings the energies of
different problem instances on a uniform scale. This in turn im-
proves the optimization of the QAOA parameters, and it also allows
the use of the same AQA time step τ (see below) for different
problem instances.

3.2. Implementations

In this section, we discuss how quantum physics simulations
are used to carry out the QAOA and AQA.

3.2.1. QAOA
We initialize the 2p variational QAOA parameters βk and γk in

Eq. (7) according to the second-order Suzuki-Trotter decomposi-
tion. This amounts to (see Appendix A)

βk = −τ (A(sk+1) + A(sk))/2, k = 1, ..., p − 1, (15)

βp = −τ A(sp)/2, (16)

γk = τ B(sk), k = 1, ..., p, (17)

where sk = (k −1)/(p −1) (slightly different from Ref. [14]) and we
take A(s) and B(s) from the DW_2000Q_6 annealing schedule [66]
(see Fig. 4). This procedure is motivated by the relation between
the QAOA and QA as discussed in more detail in [14] (see also [25]
where the first-order case is discussed).

Given values for the variational parameters β and γ , JUQCS–G
computes the variational state |β,γ 〉 given in Eq. (7), where the
exponentials exp(−iβk H D) = ∏

i exp(−iβkσ
x
i) are computed as a

sequence of rotations around the x axis with angle 2βk , and the
exponentials exp(−iγk HC) are computed as a sequence of rota-
tions around the z axis with angle 2γk and controlled-Z gates.

JUQCS–G also computes the probability of the solution state
in the variational state |β,γ 〉 and the energy expectation value
E p(β, γ) = 〈β,γ | HC |β,γ 〉. In the optimization phase of the QAOA,
this energy is passed to the optimizer (we use several optimizers
from the scipy library [90]; see below). The optimizer then pro-
poses new values for the variational parameters which are in turn
passed to JUQCS–G. If this optimization loop does not reach con-
vergence, we use an additional stopping criterion of a maximum
of 200 calls to JUQCS–G.

We note that in practice, it is only possible to optimize for the
energy E p and not for the success probability. Since we use a state-
vector simulator and know the ground state, we could in principle
also optimize for the probability to observe the ground state. How-
ever, in our benchmark, we consider the realistic situation that we
do not know the ground state and thus optimize for the energy.
We compute the probability of the ground state in a given varia-
tional state only as a measure of success.

For optimization problems, often the approximation ratio is also
considered as a measure for the performance of the QAOA. In our

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
case, however, only finding the unique ground state is considered
as success since none of the excited states encodes a valid solution
to the exact cover problem.

3.2.2. AQA
To introduce the basic idea of AQA, we first review how the

time evolution of a QA process is simulated. This allows us to de-
scribe in what sense the description becomes “approximate”, and
when the simulation of QA enters the regime of what we call AQA.

In essence, a simulation of QA requires the solution of the time-
dependent Schrödinger equation (TDSE), i∂t |ψ(t)〉 = H(t) |ψ(t)〉,
with a time-dependent Hamiltonian H(t), such as the QA Hamil-
tonian given in Eq. (5). In principle, but also in practice, the time-
discretized TDSE can be expressed as a quantum gate circuit which
can then be processed by JUQCS–G. However, for convenience (and
also as a check on the JUQCS data), we often solve the TDSE with
the quantum spin dynamics simulator (QSDS) (in house software
with the MPI communication scheme taken from JUQCS but with-
out GPU implementation). QSDS solves the TDSE for the generic
spin-1/2 Hamiltonian

HQSDS(t) = −
∑

α=x,y,z

⎛⎝∑
i< j

J̃αi j (t)σ
α
i σα

j +
N−1∑
i=0

h̃α
i (t)σα

i

⎞⎠ , (18)

where N is the number of spins (qubits). For the optimization
problems at hand, we have

h̃x
i (t) = A(t/tanneal), (19)

h̃z
i (t) = −B(t/tanneal)hi, (20)

J̃ z
i j(t) = −B(t/tanneal) J i j, (21)

where the annealing functions A and B are shown in Fig. 4, and hi
and J i j encode the problem instance as before.

QSDS solves the TDSE by time stepping using the second-order
Suzuki-Trotter formula [91,92]

|
((l + 1)τ)〉 =
{

exp

[
iτ

2

∑
α=x,z

N−1∑
i=0

h̃α
i (lτ)σα

i

]

× exp

⎡⎣iτ
∑
i< j

J̃ i j(lτ)σ z
i σ z

j

⎤⎦
×exp

[
iτ

2

∑
α=x,z

N−1∑
i=0

h̃α
i (lτ)σα

i

]}
|
(lτ)〉 , (22)

for l = 0, . . . , n (such that tanneal = (n + 1)τ). Note that the ac-
tion of each of the matrix exponentials in Eq. (22) on any state
vector can be computed exactly. For the initial state, we take
|
(0)〉 = |+〉⊗N . Apart from collecting all single-spin terms of the
Hamiltonian Eq. (18) into the same matrix exponential, the struc-
ture of the QAOA (cf. Eq. (7)) is the same as that of Eq. (22).

The basic idea of AQA is to solve the TDSE with a time step τ
which is too large to yield an accurate time evolution of a gen-
uine QA process. Moreover, the number of time steps n is taken
to be rather small. Therefore the corresponding “annealing time”
is rather short in which case the time evolution is unlikely to be
adiabatic.

In other words, we do not rely on the adiabatic theorem but
hope that with a relatively small number of factors in the prod-
uct formula with a relatively large time step, we can nevertheless
generate a final state which is close to the ground state of the
problem Hamiltonian. Clearly, AQA is a heuristic method, partially
motivated by findings [14,15,19,78,79] that optimal values for the
7

variational parameters βk and γk were often found to follow curves
which resemble such an approximate annealing schedule. For AQA,
we use again Eqs. (15)–(17) but with the convention: sk = k/n for
k = 0, ..., n.

For each step, AQA and QAOA perform exactly the same num-
ber of single-qubit and two-qubit gates. Only the single-qubit gates
may require exchange of data among MPI processes. In our AQA
simulations, we also compute the spin expectation values during
the time evolution. In terms of computational effort, AQA for a
fixed n (i.e. n + 1 steps since we start counting at 0) is equivalent
to a single evaluation of a QAOA circuit with p = n + 1.

3.3. Results

In this section, we present the simulation results on the QAOA,
AQA, and a comparison between them.

3.3.1. QAOA
We start with QAOA for p = 1 by studying the energy land-

scape and the success probability for a 30-qubit problem instance
(named 30(0)). For this purpose, we perform a scan of the pa-
rameters β ∈ [0, π) and γ ∈ [0, 2π) and compute the energy as
well as the success probability obtained for the QAOA circuit (note
that, as argued in Section 3.1.3, these parameter intervals cover the
range of different QAOA trial states). The results are shown in the
left column of Fig. 5 for the energy (top) and success probability
(bottom). The middle column shows zooms with finer grids into
regions around the energy minimum and the success probability
maximum. The right column shows zooms into another region of
interest noticeable in Fig. 5(a).

The point with the highest success probability is marked with
a cross and the point with the lowest energy is marked with a
circle. Although these points are relatively close, the energy is very
different. The point with the highest success probability is even
close to an energy maximum. However, the point at the energy
minimum still has a relatively high success probability. In the right
column, which shows the zoom in the vicinity of another local
energy minimum, we find that the success probability is quite low
(see the scale of the color bars). If, during the optimization process,
the minimizer gets stuck in such a local minimum, the probability
to observe the ground state will often be very small.

We find that the optimal parameters β∗ and γ ∗ in this case
are large (almost π) and small (almost 0), respectively, as would
be the values for A(0) and B(0) in an annealing scheme. This is
encouraging for our annealing scheme initialization for QAOA with
p > 1.

Fig. 6 shows the paths that different optimization algorithms
take when starting from the point with minimum energy found in
the scan (the black circle in Fig. 6(b)). The optimization algorithms
are standard optimizers provided by scipy [90]: sequential least
squares programming (SLSQP), the gradient-free Nelder–Mead al-
gorithm [93] (NM), the L-BFGS-B algorithm [94,95], and the con-
jugate gradient algorithm [96] (CG) (see [22] for a thorough com-
parison of different optimizers for the QAOA). Note that for the
optimization, we use the rescaled version of the problem accord-
ing to Eq. (14) (here r = 36.75); otherwise small variations in γ
led to large fluctuations in the energy and no optimizer except NM
was able to converge to the energy minimum (data not shown).

Fig. 6 shows that with rescaling, all optimizers converge to the
energy minimum, although L-BFGS-B and CG require 3–6 times
more quantum circuit simulations than SLSQP and NM. Note, how-
ever, that the convergence to the energy minimum depends cru-
cially on the good initial point; other random initial points pro-
duced much worse results (data not shown). Furthermore, it is
worth noting that none of the optimizers comes across the point
with the largest success probability (the cross in Fig. 5(b)); only

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411

Fig. 5. (a)–(c) Energy landscape and (d)–(f) success probability landscape for QAOA with p = 1 for the 30-qubit exact cover problem 30(0). The left column shows the
landscapes obtained by scanning a 64 × 64 grid β ∈ [0, π) and γ ∈ [0, 2π). The middle column shows a zoom into the area around the minimum energy found in the scan.
The largest success probability (cross) and the energy minimum (circle) in this area are indicated. Interestingly, these two points are not at the same location. The right
column shows a zoom into another area of interest around γ ≈ π and β � π .
NM and CG venture once into a region with better success prob-
ability (the right panels in Fig. 6). Obviously, this is not a flaw of
the optimizers (which can only optimize for the energy in prac-
tice), but rather a deficiency of variational algorithms in general.

We take a number of QAOA steps p ≤ 13 and minimize the
cost function 〈β,γ | HC |β,γ 〉 w.r.t. βk and γk , as one would do for
QAOA running on genuine quantum hardware. The hope is then
that by minimizing the cost function, we will also obtain relatively
large values for the success probabilities. In Table 2, we present
the results for a set of exact cover instances.

The QAOA results for p = 7, 13 are encouraging in the sense
that the success probabilities are relatively large, i.e., much larger
than 2−N which would be the probability to pick the correct solu-
tion from a uniform distribution at random. However, the number
of JUQCS–G calls required to obtain such values is also fairly large.
The numbers in parentheses indicate the number of JUQCS–G calls
corresponding to the highest observed success probability. Almost
all runs have been terminated after 200 JUQCS–G calls (black en-
tries in Table 2). Runs which were terminated by the minimizer
(red entries) have a substantially lower success probability (smaller
than 4%), suggesting that the minimizer became stuck in a local
minimum.

We also performed some QAOA simulations with p = 3. We
observed that for problem instance 30(0), the achieved success
probability was smaller by a factor of 10–20 than in the p = 7 and
p = 13 cases after using a similar number of JUQCS–G calls. For
larger problem instances, the minimizer seemed to get stuck in lo-
cal optima as the obtained success probabilities were smaller than
1%. We thus concluded that p = 3 would be too small for larger
problem instances and we did not proceed with p = 3.

3.3.2. AQA
A representative AQA result for a 40-variable exact cover prob-

lem is shown in Fig. 7. In this simulation, we chose n = 50 and
the time step τ = 0.4 ns, corresponding to a total annealing time
of tanneal = 20.4 ns. This annealing time is very short compared to
the annealing times commonly used by D-Wave quantum anneal-
ers (orders of μs).

In Table 3 we present the data of the AQA simulations with
n = 50 and τ = 0.4 ns for exact cover problems with 30, 32, ..., 40
variables. Column six of Table 3 shows that the success probability
systematically decreases as the number of qubits increases. This
8

decrease is what one would expect on the basis of the Landau-
Zener model and the assumption that the minimal spectral gap
decreases with the system size. However, AQA uses a time step of
τ = 0.4 ns that may actually be too large to justify an interpreta-
tion in terms of the Landau-Zener model. Table 3 also shows that
the computational resources required for QSDS to perform these
AQA simulations can be considerable.

As already observed earlier [14] and also observed in the AQA
simulations, solving the TDSE for model parameters that pertain
to D-Wave quantum annealers requires annealing times of the or-
der of nanoseconds to obtain success probabilities of 1% or bet-
ter. This observation leads to the conclusion that for the exact
cover problems studied here, the annealing time required by TDSE
solvers is much shorter than the typical annealing times used by
D-Wave quantum annealers, which are of the order of microsec-
onds (see also [97]). Of course, the TDSE simulations deal with a
closed quantum system, free of the interactions with other degrees
of freedom which are affecting the operation of real QA devices.
Nevertheless, if technically possible, it would be of interest to per-
form this kind of very fast annealing on genuine quantum annealer
hardware. Finally, it should be mentioned that the wall-clock time
required by QSDS (or JUQCS) to cover the nanosecond time span
is much larger than a few microseconds, see Table 3. Therefore,
D-Wave quantum annealers are very fast simulators in comparison
to the software simulators running on conventional semiconductor
hardware.

3.3.3. Comparison of QAOA and AQA
Results to compare QAOA and AQA are presented in Fig. 8(a). It

shows the success probability as a function of the number of AQA
steps 5 ≤ n ≤ 100 for different values of τ . Additionally, the arrows
for p = 6 and p = 13 show the results obtained after optimizing
the corresponding β and γ with the QAOA (using SLSQP) after 200
JUQCS–G calls. The initial and final values for β and γ are shown
in Fig. 9.

We compare QAOA and AQA in terms of computational work.
Performing QAOA with p steps and m optimization cycles (i.e., m
calls to JUQCS–G) needs computational work proportional to m × p.
Performing AQA with n is equivalent to performing QAOA with p =
n + 1 and m = 1 (as AQA only needs a single call to JUQCS–G), so
the computational work equivalent for AQA is n +1. Thus, for QAOA

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Fig. 6. Comparison of different classical optimizers used to optimize the variational
parameters β and γ for QAOA with p = 1 for the 30-qubit exact cover problem
30(0). The optimizers are (a) SLSQP, (b) NM, (c) L-BFGS-B, and (d) CG (see main
text). The starting point for the optimization is the point with minimal energy found
in the initial scan (black circles, corresponding to the black circles in Figs. 5(b) and
(e)). For each optimizer, the left (right) panel shows the energy (success probability)
landscape. The number of JUQCS–G calls used by each optimizer is indicated in
the top left corner of each panel. The parameters for each call are shown with
black crosses. The order in which the parameters are evaluated by the optimizers is
indicated with arrows with colors evolving from black (for the first JUQCS–G call)
to white (for the last JUQCS–G call). Note that, although the rescaled version of the
problem was used for the optimization (see Eq. (14); here r = 36.75), we plot γ /r
and energy ∗ r to make the scale comparable with the grid scan in Fig. 5.

to compete with AQA, it should use m < (n + 1)/p optimization
cycles to reach a similar success probability.

However, as already mentioned and seen in Table 2, the number
of JUQCS–G calls m required to obtain high success probabilities
with the QAOA is fairly large. And as Fig. 8(a) shows, sometimes
even m = 200 optimization cycles (with computational work 200p)
are not enough to reach the success probabilities that AQA reaches
already after n = 100 steps. Hence, for the exact cover instances
considered, QAOA cannot compete with AQA in terms of computa-
tional efficiency.

For AQA, we find that the success probability increases for in-
creasing number of steps n. As Fig. 8(b) shows, the main increase
in the success probability is due to the increased annealing time.
The success probability also increases with τ , up to a certain point
where no further improvement is made. For τ = 0.8 ns, we find
that for a fixed annealing time the probability is substantially
lower than for the other values of τ . Here, the time step τ = 0.8 ns
9

Table 2
QAOA results for exact cover instances, obtained by minimizing the energy expecta-
tion value using SLSQP. QAOA quantum gate circuits were executed using JUQCS–G.
The success probability is determined by computing the probability of the ground
state after each iteration and searching for the iteration number (given in parenthe-
ses) for which this probability is largest. The number of JUQCS–G calls was limited
to 200. Red colored entries: The run was terminated by the minimizer that was
probably stuck in a local minimum; black colored entries: The run was terminated
when the 200 JUQCS–G calls had been reached. For p = 13, the calculations are too
costly to warrant filling all missing entries.

qubits success probability (JUQCS–G calls)

(instance) p = 7 p = 13

30(0) 0.3398 (165) 0.6214 (187)
30(3) 0.3708 (196) -
32(0) 0.2841 (195) -
32(3) 0.2745 (192) 0.4741 (193)
34(0) 0.1924 (190) -
34(3) 0.2251 (196) 0.5075 (187)
36(0) 0.1081 (191) -
36(3) 0.1545 (175) 0.0387 (94)
38(0) 0.0901 (187) -
38(3) 0.1200 (174) 0.0159 (124)
40(0) 0.0068 (71) 0.0088 (123)
40(3) 0.0061 (38) -

Fig. 7. AQA results for the 40-variable exact cover instance 40(0). Shown are the
spin expectation values 〈σ z

i (s)〉 during the time evolution generated by Eq. (5), as
a function of the normalized annealing time s = t/tanneal . Different lines correspond
to different qubits i = 0, . . . , N − 1 for N = 40. The success probability to generate
the state corresponding to the solution of this instance is 0.038. The number of
steps is n = 50 and the time step is τ = 0.4 ns.

Table 3
AQA results (success probabilities Psuccess) obtained by solving the TDSE for Hamil-
tonians derived from exact cover instances. Required hardware resources as well as
the total run time t are also listed. The annealing scheme is obtained by discretizing
the DW_2000Q_6 annealing scheme. QSDS was used with n = 50 and τ = 0.4 ns,
corresponding to an annealing time tanneal = 20.4 ns. All data was generated on
JUWELS-CLUSTER [3], except column seven which lists the elapsed times tFE that it
took four A100 GPUs to solve the exact cover instances by full enumeration.

instance nodes processes cores t [hh:mm] Psuccess tFE

30(0) 64 1024 3072 00:08 0.417 1.7 s
32(3) 256 4096 12288 00:14 0.237 1.7 s
34(3) 256 4096 12288 00:52 0.193 2.4 s
36(3) 256 4096 12288 03:50 0.110 6.0 s
38(3) 256 4096 12288 16:40 0.085 22.3 s
40(0) 1024 16384 49152 24:40 0.038 91.8 s

is too large to justify even a crude approximation of an annealing
schedule.

We believe that AQA is best seen as a viable heuristic, requiring
a few numerical experiments to optimize the parameters (in con-
trast to the QAOA which usually needs many iterations to obtain
a reasonable result). To some extent, Fig. 8(b) gives a hint for an
explanation why AQA works well. For small time steps (τ = 0.1),

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Fig. 8. Comparison of AQA and QAOA, using exact cover instance 30(0). (a) Success
probability as a function of n (AQA, bottom axis) and p (QAOA, top axis). In terms of
computational effort, AQA with n steps is equivalent to a single JUQCS-call for the
QAOA circuit with p = n + 1, so they are shown together. AQA results are indicated
by markers (lines are guides to the eye). QAOA results are indicated by the arrows
showing the improvement due to the optimization of the variational parameters
from the AQA initialization. (b) Success probability obtained by AQA as a function
of “annealing time” tanneal = (n + 1)τ for different values of τ . Lines are guides to
the eye.

AQA is essentially the same as slow quantum annealing which, ac-
cording to the adiabatic theorem, should give the ground state of
the problem Hamiltonian. If the time step is too large (τ = 0.8),
we lose contact with the idea of quantum annealing. We still get
reasonable success probabilities for t < 20, but if we then an-
neal longer, the success probability drops. We have started a new
project that specifically studies AQA to address this aspect.

The fact that QAOA is able to optimize the cases τ ∈ {0.1,0.2,

0.4} ns can be interpreted as follows: For τ up to 0.4 ns, AQA still
resembles QA with a very short annealing time (e.g. by render-
ing the system in a low energy state as in [98]), so optimization
can increase the success probability (as indicated by the arrows in
Fig. 8(a)). The case τ = 0.8 ns, however, does not seem to yield
suitable initial values for the parameters βk and γk as is clear from
the fact that the optimization during QAOA does not yield a sig-
nificant improvement. However, for AQA with a small number of
steps n (e.g. n = 5 where Psuccess ≈ 10−3 in Fig. 8(a)), it may still
be a reasonable choice (see also the surprisingly good scaling in
Fig. 11 below).

On the one hand, we find that with AQA for a large number of
steps (n ≈ 50–100), we obtain similar success probabilities as with
QAOA for smaller p ≈ 6–13, but the QAOA optimization requires
many calls to JUQCS–G. Moreover, we also observed that the min-
imizer can get stuck in a local optimum which then does not lead
to an improved performance over AQA even for the same num-
ber of steps and many more circuit evaluations. However, also for
AQA, we have to search for a good value of τ which optimizes
10
Fig. 9. Visualization of the variational QAOA parameters (a) βk and (b) γk for p = 13
using exact cover instance 30(0). Solid lines show the initial values taken from the
second-order QA initialization (see Fig. 4 and Eqs. (15)–(17)), corresponding to the
start of the lines with arrows in Fig. 8(a). Dashed lines show the final parameters
after 200 QAOA optimization cycles (i.e., 200 JUQCS–G calls), corresponding to the
end of the lines with arrows in Fig. 8(a). For τ = 0.8 ns (red squares), not the full
set of final QAOA parameters is shown to keep the scale reasonable for the other
cases and because Fig. 8(a) shows that the optimization brings no improvement
in the performance. Note that the fact that the optimized βk and γk still roughly
follow the initialization from QA suggests that it was an effective modification of
the annealing schedule that could so dramatically improve the success probability
in Fig. 8(a).

the success probability for a given number of steps n. The same τ
that leads to an optimal success probability for a certain value of
n may not be optimal for other values of n. Still, for AQA, we ba-
sically have to optimize a single parameter only (if n is fixed) and
not 2p parameters as is the case for QAOA.

On the other hand, for NISQ devices, AQA with a large number
of steps n (and equivalently QAOA with a large number of steps
p) will probably suffer from accumulated errors during the rela-
tively long quantum circuit. Thus, NISQ devices may cope better
with QAOA with small p than AQA with large n. Perhaps, build-
ing on the result that the optimized βk and γk in Fig. 9 were not
far from the annealing initialization, the best solution might be
to indeed use AQA with small n but with better effective (maybe
problem-dependent) annealing schedules. Comparing the perfor-
mance of AQA and QAOA on NISQ devices in practice would be
an interesting study for the future.

3.3.4. Scaling as a function of the problem size N
In Figs. 10 and 11, we show the scaling of the success prob-

abilities obtained for different problem instances with increasing
number of qubits using AQA and QAOA. In Fig. 10, the scalings
of AQA and QAOA with the system size look quite similar up to
N = 34. For larger N , the drops in the success probability for the

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Fig. 10. Scaling of the success probability as a function of the system size N . The
different markers correspond to AQA with n = 50 and τ = 0.4 ns (green asterisks),
QAOA for p = 7 (red squares), and QAOA for p = 13 (blue circles), taken from Ta-
bles 2 and 3. The dash-dotted line indicates the scaling of a uniform probability
distribution. The green asterisk at N = 30 is the same point shown in Fig. 8 at
n = 50, τ = 0.4 ns and tanneal = 20.4 ns. Lines are guides to the eye.

Fig. 11. Scaling of the success probability as a function of the system size N , using
AQA with n = 5 (filled triangles) and pre-optimized QAOA with p = 6 (open tri-
angles). Here, pre-optimized means that for all instances, the same values for βk

and γk (obtained from the optimization of the 30-qubit problem instance 30(0), see
Fig. 8) are used. We ran two problem instances for each system size, so all triangles
appear in pairs. Solid (dashed) lines show fits to the AQA (QAOA) results. Different
colors correspond to different values for τ as indicated in Fig. 8. The dash-dotted
line indicates the probability to find the solution when picking from a uniform dis-
tribution at random. The data for all runs was obtained with JUQCS–G, using a
quantum circuit that performs the time evolution simulated by QSDS (see Eq. (22)),
thereby leveraging the computational power of the GPUs.

QAOA data are where the minimizer probably got stuck in a local
optimum (red entries in Table 2). We note that for QAOA, we ran
the optimization procedure for each system size. For AQA, we did
not perform any optimization but we used a relatively large step
size τ .

In Fig. 11, we always use the same βk and γk obtained from
the QAOA optimization for problem instance 30(0). In other words,
we take the variational parameters obtained by optimizing the 30-
qubit instance 30(0), and we use the same parameters for different
problem instances of different size. In this way, we test how well
the effective “modified annealing schedule” (cf. Fig. 9) generalizes
to other problems of larger size.
11
Fig. 11 shows that the QAOA parameters generalize systemat-
ically, but as expected, the success probability still drops expo-
nentially with increasing qubit number. Furthermore, the fits to
the data (lines) show that the exponential scaling is of the form
2−αN for α � 0.6. In contrast, we observe that for AQA, although
the drop in success probability is also exponential, the exponent
α behaves more favorably. Remarkably, this favorable scaling is
especially pronounced for the large value of τ = 0.8 ns (where
α = 0.34), which is very far in the AQA regime.

4. Summary

The first part of this paper was devoted to the study of the
weak and strong scaling behavior of a GPU-accelerated version
(JUQCS–G) of the Jülich Universal Quantum Computer Simulator
(JUQCS) [1] by performing benchmarks on JUWELS Booster, a su-
percomputer with 3744 NVIDIA A100 Tensor Core GPUs. Our data
shows that JUQCS–G exhibits nearly perfect weak and strong scal-
ing for systems up to 42 qubits. Comparing elapsed times for
JUQCS–G and for JUQCS–E, a non-GPU version of JUQCS, shows
that the former is a factor of 10–18 faster than the latter. As the
number of qubits reaches the maximum that the available memory
allows, the larger fraction of the elapsed time goes into MPI com-
munication, for both the GPU and non-GPU version. In any case,
using the GPU version significantly reduces the computing time
required to simulate quantum computers and quantum systems.

In the second part of the paper, we have used JUQCS–G to
solve exact cover problems with up to 40 variables (qubits). Hereby
the focus was on the assessment of the potential of the quan-
tum approximate optimization algorithm (QAOA) as a vehicle to
solve optimization problems involving 30–40 qubits. Due to the
minimization of parameters reflecting the variational nature of the
QAOA, it is necessary to execute the quantum circuit many times.
In most cases, at least for the 30–40 qubit instances that we have
studied, the number of repetitions (with different sets of parame-
ters) has a negative impact on the efficiency of the QAOA.

As an alternative, we also studied the performance of what we
called approximate quantum annealing (AQA). AQA is a discretized
version of quantum annealing which is approximate in the sense
that we use only a few, relatively large time steps, possibly be-
yond the regime where quantum annealing is theoretically justified
through the adiabatic theorem. Nevertheless, we found that, with-
out any optimization, we already obtain success probabilities
 1%
for problem instances up to N = 40 qubits. These promising results
suggest that for future gate-based quantum computers which can
cope with a larger circuit depth, direct AQA may provide a better
alternative to the QAOA as it avoids the costly optimization proce-
dure. As a matter of fact, from a computational viewpoint, AQA is
much more efficient than the QAOA.

It is self-evident that all the simulation results that we have
presented in this paper have been obtained by simulating the ideal
mathematical model of a gate-based quantum computer. In this
sense, the 30–40 qubit results presented in this paper are the “best
case”, very unlikely to be achieved by using a real quantum proces-
sor. Of course, it is possible to incorporate noise and errors into our
simulations (left for future work), but accounting for the intrinsic
quantum gate errors of 30–40 qubit systems requires simulation
times that are currently prohibitive [99]. Clearly, to get a view on
the errors involved, it would be very interesting to run say a 30-
qubit exact cover quantum circuit on a NISQ device and compare
the experimental data with the simulation results. Furthermore, as
our conclusions are drawn from results obtained for 30–40 vari-
able exact cover problems, it might be of interest to investigate
how generic these conclusions are by studying different types of
optimization problems.

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Su-
percomputing e.V. (www.gauss-centre.eu) for funding this project
by providing computing time on the GCS Supercomputer JUWELS
at Jülich Supercomputing Centre (JSC). We would like to thank
M. Svensson for providing the exact cover problem instances. We
gratefully acknowledge support during the JUWELS Booster Early
Access period by A. Herten, M. Hrywniak, J. Kraus, A. Koehler, P.
Messmer, M. Knobloch as well as the JUWELS Booster Project Team
(JSC, Atos, ParTec, NVIDIA). D.W.’s work was partially supported by
the Q(AI)2 project. D.W. and M.W. acknowledge support from the
project Jülich UNified Infrastructure for Quantum computing (JU-
NIQ) that has received funding from the German Federal Ministry
of Education and Research (BMBF) and the Ministry of Culture and
Science of the State of North Rhine-Westphalia.

Appendix A. Second-order initialization of the QAOA parameters

The QAOA state with 2p variational parameters βk and γk reads
(see Eq. (7))

|β,γ 〉 = e−iβp H D e−iγp HC · · · e−iβ1 H D e−iγ1 HC |+〉⊗N . (A.1)

Inserting the values for the QAOA parameters given in Eqs. (15)–
(17), and replacing |+〉⊗N by eiτ A(s1)H D/2 |+〉⊗N (which only differs
from |+〉⊗N by a global phase and is thus physically equivalent)
yields

|β,γ 〉 = eiτ A(sp)H D/2e−iτ B(sp)HC

· · · eiτ (A(s2)+A(s1))H D/2e−iτ B(s1)HC eiτ A(s1)H D/2 |+〉⊗N .

(A.2)

Here we see that |β,γ 〉 can be expressed as

|β,γ 〉 = U (sp) · · · U (s1) |+〉⊗N , (A.3)

where U (sk) for k = 1, . . . , p is the second-order Suzuki-Trotter de-
composition [51,52],

U (sk) = eiτ A(sk)H D/2e−iτ B(sk)HC eiτ A(sk)H D/2, (A.4)

of the discretized time-evolution operator generated by the QA
Hamiltonian H(s) = A(s)(−H D) + B(s)HC (see Eq. (5)). We note
that besides the choice sk = (k − 1)/(p − 1) taken in this paper,
also the mid-point decomposition used in [14] is a good choice for
the discretization (cf. [91]).

References

[1] H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, S. Yuan, K.
Michielsen, Comput. Phys. Commun. 237 (2019) 47.

[2] D. Willsch, H. Lagemann, M. Willsch, F. Jin, H. De Raedt, K. Michielsen, in:
M. Müller, K. Binder, A. Trautmann (Eds.), NIC Symposium 2020, in: Publica-
tion Series of the John von Neumann Institute for Computing (NIC) NIC Series,
vol. 50, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Jülich, 2020,
pp. 255–264.

[3] Jülich Supercomputing Centre, J. Large-Scale Res. Facil. 5 (2019) A135.
[4] H. De Raedt, D. Willsch, Jülich Universal Quantum Computer Simulator (docker

container), https://jugit .fz -juelich .de /qip /juqcs -docker.git, 2021.
[5] E. Suarez, W. Frings, N. Attig, S. Achilles, J. De Amicis, T. Eickermann, E. Gre-

gory, B. Hagemeier, A. Herten, J. Jitsev, D. Krause, E. Di Napoli, J. Meinke, K.
Michielsen, B. Mohr, D. Pleiter, A. Strube, Th. Lippert, in: NIC Symposium 2020,
in: Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series, vol. 50, 2020, pp. 1–19.
12
[6] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter, T. Lip-
pert, H. Watanabe, N. Ito, Comput. Phys. Commun. 176 (2007) 121.

[7] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S.
Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R.
Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M.
Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,
K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Land-
huis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen,
A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley,
C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana, E.G. Rieffel, P.
Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao, P. Yeh, A. Zalcman, H.
Neven, J.M. Martinis, Nature 574 (2019) 505.

[8] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algo-
rithm, arXiv:1411.4028, 2014.

[9] E. Farhi, A.W. Harrow, Quantum supremacy through the quantum approximate
optimization algorithm, arXiv:1602 .07674, 2016.

[10] J. Preskill, Quantum 2 (2018) 79.
[11] Z. Wang, S. Hadfield, Z. Jiang, E.G. Rieffel, Phys. Rev. A 97 (2018) 022304.
[12] J.S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Cald-

well, N. Didier, E.S. Fried, S. Hong, P. Karalekas, C.B. Osborn, A. Papageorge,
E.C. Peterson, G. Prawiroatmodjo, N. Rubin, C.A. Ryan, D. Scarabelli, M. Scheer,
E.A. Sete, P. Sivarajah, R.S. Smith, A. Staley, N. Tezak, W.J. Zeng, A. Hudson, B.R.
Johnson, M. Reagor, M.P. da Silva, C. Rigetti, Unsupervised machine learning on
a hybrid quantum computer, arXiv:1712 .05771, 2017.

[13] X. Qiang, X. Zhou, J. Wang, C.M. Wilkes, T. Loke, S. O’Gara, L. Kling, G.D. Mar-
shall, R. Santagati, T.C. Ralph, J.B. Wang, J.L. O’Brien, M.G. Thompson, J.C.F.
Matthews, Nat. Photonics 12 (2018) 534.

[14] M. Willsch, D. Willsch, F. Jin, H. De Raedt, K. Michielsen, Quantum Inf. Process.
19 (2020) 197.

[15] P. Vikstål, M. Grönkvist, M. Svensson, M. Andersson, G. Johansson, G. Ferrini,
Phys. Rev. Appl. 14 (2020) 034009.

[16] A. Bengtsson, P. Vikstål, C. Warren, M. Svensson, X. Gu, A.F. Kockum, P. Krantz,
C. Križan, D. Shiri, I.-M. Svensson, G. Tancredi, G. Johansson, P. Delsing, G. Fer-
rini, J. Bylander, Phys. Rev. Appl. 14 (2020) 034010.

[17] N. Lacroix, C. Hellings, C.K. Andersen, A. Di Paolo, A. Remm, S. Lazar, S. Krin-
ner, G.J. Norris, M. Gabureac, J. Heinsoo, A. Blais, C. Eichler, A. Wallraff, PRX
Quantum 1 (2020) 110304.

[18] G. Pagano, A. Bapat, P. Becker, K.S. Collins, A. De, P.W. Hess, H.B. Kaplan, A.
Kyprianidis, W.L. Tan, C. Baldwin, L.T. Brady, A. Deshpande, F. Liu, S. Jordan,
A.V. Gorshkov, C. Monroe, Proc. Natl. Acad. Sci. 117 (2020) 25396, https://www.
pnas .org /content /117 /41 /25396 .full .pdf.

[19] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, M.D. Lukin, Phys. Rev. X 10 (2020)
021067.

[20] V. Akshay, H. Philathong, M.E.S. Morales, J.D. Biamonte, Phys. Rev. Lett. 124
(2020) 090504.

[21] M.P. Harrigan, K.J. Sung, M. Neeley, K.J. Satzinger, F. Arute, K. Arya, J. Ata-
laya, J.C. Bardin, R. Barends, S. Boixo, M. Broughton, B.B. Buckley, D.A. Buell,
B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S.
Demura, A. Dunsworth, D. Eppens, A. Fowler, B. Foxen, C. Gidney, M. Giustina,
R. Graff, S. Habegger, A. Ho, S. Hong, T. Huang, L.B. Ioffe, S.V. Isakov, E. Jef-
frey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P.V. Klimov, A.N.
Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, M. Leib, O. Mar-
tin, J.M. Martinis, J.R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni,
W. Mruczkiewicz, J. Mutus, O. Naaman, C. Neill, F. Neukart, M.Y. Niu, T.E.
O’Brien, B. O’Gorman, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P.
Roushan, N.C. Rubin, D. Sank, A. Skolik, V. Smelyanskiy, D. Strain, M. Streif,
M. Szalay, A. Vainsencher, T. White, Z.J. Yao, P. Yeh, A. Zalcman, L. Zhou, H.
Neven, D. Bacon, E. Lucero, E. Farhi, R. Babbush, Nat. Phys. (2021), https://
doi .org /10 .1038 /s41567 -020 -01105 -y.

[22] M. Fernández-Pendás, E.F. Combarro, S. Vallecorsa, J. Ranilla, I.F. Rúa, J. Comput.
Appl. Math. 113388 (2021).

[23] M. Medvidović, G. Carleo, npj Quantum Inf. 7 (2021) 101.
[24] M. Streif, M. Leib, Quantum Sci. Technol. 5 (2020) 034008.
[25] S.H. Sack, M. Serbyn, Quantum annealing initialization of the quantum approx-

imate optimization algorithm, arXiv:2101.05742 [quant -ph], 2021.
[26] B. Apolloni, C. Carvalho, D. de Falco, Stoch. Process. Appl. 33 (1989) 233.
[27] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, J. Doll, Chem. Phys. Lett. 219

(1994) 343.
[28] T. Kadowaki, H. Nishimori, Phys. Rev. E 58 (1998) 5355.
[29] J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284 (1999) 779.
[30] R. Harris, M.W. Johnson, T. Lanting, A.J. Berkley, J. Johansson, P. Bunyk, E. Tolka-

cheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C.
Enderud, C. Rich, S. Uchaikin, M.C. Thom, E.M. Chapple, J. Wang, B. Wilson,
M.H.S. Amin, N. Dickson, K. Karimi, B. Macready, C.J.S. Truncik, G. Rose, Phys.
Rev. B 82 (2010) 024511.

[31] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Har-
ris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K.
Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E.

https://www.gauss-centre.eu
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib62EAE2291776670AA7B4C7A1046BE918s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib62EAE2291776670AA7B4C7A1046BE918s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib208F4658BE8BD691B62C33870738E7A7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib208F4658BE8BD691B62C33870738E7A7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib208F4658BE8BD691B62C33870738E7A7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib208F4658BE8BD691B62C33870738E7A7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib208F4658BE8BD691B62C33870738E7A7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEB35E2528B0299479E5A624D05201196s1
https://jugit.fz-juelich.de/qip/juqcs-docker.git
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4DA55F4A3122673154EA51E43E8DB691s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4DA55F4A3122673154EA51E43E8DB691s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4DA55F4A3122673154EA51E43E8DB691s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4DA55F4A3122673154EA51E43E8DB691s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4DA55F4A3122673154EA51E43E8DB691s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEB3B1A8B7F26CBFAB9F11D1C8F155Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEB3B1A8B7F26CBFAB9F11D1C8F155Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9EEA77A441AC3AA1D8C089D5F4773E68s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibFA0003950AEFD781E10807169794E65Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibFA0003950AEFD781E10807169794E65Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDCDC3331C73A5EF0FE6B88B07D50A85Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDCDC3331C73A5EF0FE6B88B07D50A85Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibFC6E1A2B15B8814E099DC6847718A48As1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib86FEC60152D70BE473FE7DDFA20863A5s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib9342A1A6F64F359032FC885F58356384s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE2544072FFE251BE8434CEBE371BA6C8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE2544072FFE251BE8434CEBE371BA6C8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE2544072FFE251BE8434CEBE371BA6C8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib829DBEA623BC4DD443AB5721B8F19417s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib829DBEA623BC4DD443AB5721B8F19417s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib71D7EB65E650C65E6FF04F0724D79B33s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib71D7EB65E650C65E6FF04F0724D79B33s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE32BB2CF28F6AE2917410BB867FF8761s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE32BB2CF28F6AE2917410BB867FF8761s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE32BB2CF28F6AE2917410BB867FF8761s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib2464FC54319FC7B2797F7D8A46436DF1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib2464FC54319FC7B2797F7D8A46436DF1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib2464FC54319FC7B2797F7D8A46436DF1s1
https://www.pnas.org/content/117/41/25396.full.pdf
https://www.pnas.org/content/117/41/25396.full.pdf
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1BC675DB63D30A4E14FEA8C0A4DB297Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1BC675DB63D30A4E14FEA8C0A4DB297Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib55F9AC36EFDDE331797C70AB2B354494s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib55F9AC36EFDDE331797C70AB2B354494s1
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038/s41567-020-01105-y
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibF055C1169D5D7376A18BEEA8C720F440s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibF055C1169D5D7376A18BEEA8C720F440s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib0B0E30C39F5F536B2988D2C646C116D3s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib94D2B430F12CE4042DC6159A927C7857s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD478DC76435EABAEE4D64BAE4A5AE44As1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD478DC76435EABAEE4D64BAE4A5AE44As1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib94B73BB0DC80F3318240CFB1940111DBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4C037BD85F4864ACC19678C58140489Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4C037BD85F4864ACC19678C58140489Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib55F190123163CAE913EF6C5C06AEDD5Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib7643124F06D0995350BC1871631671EDs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6338DABE8D04C1C4B3EB523589074328s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6338DABE8D04C1C4B3EB523589074328s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6338DABE8D04C1C4B3EB523589074328s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6338DABE8D04C1C4B3EB523589074328s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6338DABE8D04C1C4B3EB523589074328s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1D6E6B0F12E7B8C74617DE87F104A92Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1D6E6B0F12E7B8C74617DE87F104A92Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1D6E6B0F12E7B8C74617DE87F104A92Bs1

D. Willsch, M. Willsch, F. Jin et al. Computer Physics Communications 278 (2022) 108411
Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Nature 473
(2011) 194.

[32] P.I. Bunyk, E.M. Hoskinson, M.W. Johnson, E. Tolkacheva, F. Altomare, A.J.
Berkley, R. Harris, J.P. Hilton, T. Lanting, A.J. Przybysz, J. Whittaker, IEEE Trans.
Appl. Supercond. 24 (2014) 1.

[33] J. Job, D. Lidar, Quantum Sci. Technol. 3 (2018) 030501.
[34] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Rep. Prog.

Phys. 83 (2020) 054401.
[35] R.K. Nath, H. Thapliyal, T.S. Humble, SN Comput. Sci. 2 (2021) 365.
[36] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, 10th

ed., Cambridge University Press, Cambridge, 2010.
[37] C. McGeoch, P. Farré, The D-Wave Advantage System: an Overview, Tech. Rep.,

D-Wave Systems Inc, Burnaby, BC, Canada, 2020, D-Wave Technical Report Se-
ries 14-1049A-A.

[38] H.S. Bhatia, F. Phillipson, in: M. Paszynski, D. Kranzlmüller, V.V.
Krzhizhanovskaya, J.J. Dongarra, P.M.A. Sloot (Eds.), Computational Science
– ICCS 2021, Springer International Publishing, Cham, 2021, pp. 84–97.

[39] F. Phillipson, R.S. Wezeman, I. Chiscop, Computers 10 (2021) 71.
[40] D. Willsch, M. Willsch, H. De Raedt, K. Michielsen, Comput. Phys. Commun. 248

(2020) 107006.
[41] J. Cohen, C. Alexander, Picking efficient portfolios from 3,171 US common

stocks with new quantum and classical solvers, arXiv:2011.01308 [quant -ph],
2020.

[42] T. Birdal, V. Golyanik, C. Theobalt, L. Guibas, Quantum permutation synchro-
nization, arXiv:2101.07755 [quant -ph], 2021.

[43] S.A. Rahman, R. Lewis, E. Mendicelli, S. Powell, SU(2) lattice gauge theory on a
quantum annealer, arXiv:2103 .08661 [hep -lat], 2021.

[44] A.D. King, W. Bernoudy, Performance benefits of increased qubit connectivity in
quantum annealing 3-dimensional spin glasses, arXiv:2009 .12479 [quant -ph],
2020.

[45] C.D. Gonzalez Calaza, D. Willsch, K. Michielsen, Quantum Inf. Process. 20 (2021)
305.

[46] D. Willsch, M. Willsch, C.D.G. Calaza, F. Jin, H. De Raedt, M. Svensson, K.
Michielsen, Benchmarking advantage and D-wave 2000Q quantum annealers
with exact cover problems, arXiv:2105 .02208 [quant -ph], 2021.

[47] M. Heyl, P. Hauke, P. Zoller, Sci. Adv. 5 (2019) eaau8342.
[48] L.M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F. Haake, P. Zoller, npj

Quantum Inf. 5 (2019) 78.
[49] H.F. Trotter, Proc. Am. Math. Soc. 10 (1959) 545.
[50] M. Suzuki, Commun. Math. Phys. 51 (1976) 83.
[51] H. De Raedt, B. De Raedt, Phys. Rev. A 28 (1983) 3575.
[52] M. Suzuki, J. Math. Phys. 26 (1985) 601, https://doi .org /10 .1063 /1.526596.
[53] M. Streif, M. Leib, Comparison of QAOA with quantum and simulated annealing,

arXiv:1901.01903 [quant -ph], 2019.
[54] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard

Version 4.0, 2021.
[55] D. Deutsch, A. Barenco, A. Ekert, Proc. R. Soc. Lond. A 449 (1995) 669.
[56] D.P. DiVincenzo, Phys. Rev. A 51 (1995) 1015.
[57] E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, R.

Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits,
arXiv:1710 .05867, 2017.

[58] S. Boixo, S.V. Isakov, V.N. Smelyanskiy, H. Neven, Simulation of low-depth quan-
tum circuits as complex undirected graphical models, arXiv:1712 .05384, 2017.

[59] Z. Chen, Q. Zhou, C. Xue, X. Yang, G. Guo, G. Guo, Sci. Bull. 964 (2018).
[60] I.L. Markov, A. Fatima, S.V. Isakov, S. Boixo, Quantum supremacy is both closer

and farther than it appears, arXiv:1807.10749, 2018.
[61] B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T.S. Humble, R. Biswas, E.G. Rieffel, A.

Ho, S. Mandrà, Establishing the quantum supremacy frontier with a 281 Pflop/s
simulation, arXiv:1905 .00444, 2019.

[62] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, S. Mandrà, npj
Quantum Inf. 5 (2019), https://doi .org /10 .1038 /s41534 -019 -0196 -1.

[63] Y. Zhou, E.M. Stoudenmire, X. Waintal, Phys. Rev. X 10 (2020) 041038.
[64] F. Pan, P. Zhang, Simulating the Sycamore quantum supremacy circuits, arXiv:

2103 .03074 [quant -ph], 2021.
[65] K. Michielsen, M. Nocon, D. Willsch, F. Jin, Th. Lippert, H. De Raedt, Comput.

Phys. Commun. 220 (2017) 44.
[66] D-Wave Systems, QPU-specific anneal schedules, https://docs .dwavesys .com /

docs /latest /doc _physical _properties .html.
[67] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adia-

batic evolution, arXiv:quant -ph /0001106, 2000.

[68] A.M. Childs, E. Farhi, J. Preskill, Phys. Rev. A 65 (2001) 012322.
[69] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P.

Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. deBuen, M. Drew-
Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E.
Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov,
C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva,
S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Nat. Commun. 4 (2013)
1903.

[70] Z. Bian, F. Chudak, R. Israel, B. Lackey, W.G. Macready, A. Roy, Front. Phys. 2
(2014) 56.

[71] M.H. Amin, Phys. Rev. A 92 (2015) 052323.
[72] A. Mishra, T. Albash, D.A. Lidar, Nat. Commun. 9 (2018) 2917.
[73] J. Marshall, D. Venturelli, I. Hen, E.G. Rieffel, Phys. Rev. Appl. 11 (2019) 044083.
[74] A. Pearson, A. Mishra, I. Hen, D.A. Lidar, npj Quantum Inf. 5 (2019) 107.
[75] P. Weinberg, M. Tylutki, J.M. Rönkkö, J. Westerholm, J.A. Åström, P. Manninen,

P. Törmä, A.W. Sandvik, Phys. Rev. Lett. 124 (2020) 090502.
[76] S. Hadfield, Z. Wang, B. O’Gorman, E.G. Rieffel, D. Venturelli, R. Biswas, Algo-

rithms 12 (2019) 34.
[77] L. Zhu, H.L. Tang, G.S. Barron, N.J. Mayhall, E. Barnes, S.E. Economou, An adap-

tive quantum approximate optimization algorithm for solving combinatorial
problems on a quantum computer, arXiv:2005 .10258, 2020.

[78] G.E. Crooks, Performance of the quantum approximate optimization algorithm
on the maximum cut problem, arXiv:1811.08419v1, 2018.

[79] F.G.S.L. Brandao, M. Broughton, E. Farhi, S. Gutmann, H. Neven, For fixed con-
trol parameters the quantum approximate optimization algorithm’s objective
function value concentrates for typical instances, arXiv:1812 .04170, 2018.

[80] E. Farhi, J. Goldstone, S. Gutmann, L. Zhou, The quantum approximate op-
timization algorithm and the Sherrington-Kirkpatrick model at infinite size,
arXiv:1910 .08187, 2019.

[81] R.M. Karp, in: R.E. Miller, J.W. Thatcher, J.D. Bohlinger (Eds.), Complexity of
Computer Computations: Proceedings of a Symposium on the Complexity of
Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York, and sponsored by the Office
of Naval Research, Mathematics Program, IBM World Trade Corporation, and
the IBM Research Mathematical Sciences Department, Springer US, Boston, MA,
1972, pp. 85–103.

[82] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292
(2001) 472.

[83] V. Choi, Adiabatic quantum algorithms for the NP-complete maximum-weight
independent set, exact cover and 3SAT problems, arXiv:1004 .2226 [quant -ph],
2010.

[84] A. Lucas, Front. Phys. 2 (2014) 5.
[85] Y. Cao, S. Jiang, D. Perouli, S. Kais, Sci. Rep. 6 (2016) 33957.
[86] I. Sax, S. Feld, S. Zielinski, T. Gabor, C. Linnhoff-Popien, W. Mauerer, in: Proceed-

ings of the 17th ACM International Conference on Computing Frontiers, CF ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 108–117.

[87] A. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, Eur. J. Oper. Res. 153 (2004) 3,
timetabling and Rostering.

[88] A. Tahir, G. Desaulniers, I. El Hallaoui, EURO J. Transp. Logist. 8 (2019) 713.
[89] D-Wave Systems, D-Wave Solver Properties and Parameters, Tech. Rep., D-Wave

Systems Inc., Burnaby, BC, Canada, 2021, D-Wave User Manual 09-1169A-S.
[90] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for

Python, 2001.
[91] M. Suzuki, Proc. Jpn. Acad. Ser. B 69 (1993) 161.
[92] H. De Raedt, K. Michielsen, in: M. Rieth, W. Schommers (Eds.), Handbook of

Theoretical and Computational Nanotechnology, American Scientific Publishers,
Los Angeles, 2006, pp. 2–48.

[93] J.A. Nelder, R. Mead, Comput. J. 7 (1965) 308.
[94] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ACM Trans. Math. Softw. 23 (1997) 550.
[95] J. Morales, J. Nocedal, ACM Trans. Math. Softw. 38 (2011) 7.
[96] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes:

The Art of Scientific Computing, 3rd edition, Cambridge University Press, New
York, USA, 2007.

[97] M. Willsch, D. Willsch, F. Jin, H. De Raedt, K. Michielsen, Phys. Rev. A 101
(2020) 012327.

[98] T.-J. Hsu, F. Jin, C. Seidel, F. Neukart, H. De Raedt, K. Michielsen, Commun. Com-
put. Phys. 26 (2019) 928.

[99] D. Willsch, Supercomputer simulations of transmon quantum computers, Ph.D.
thesis, RWTH Aachen University, Aachen, 2020.
13

http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1D6E6B0F12E7B8C74617DE87F104A92Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1D6E6B0F12E7B8C74617DE87F104A92Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib080242F0A02878DF56294CF88968F525s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib080242F0A02878DF56294CF88968F525s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib080242F0A02878DF56294CF88968F525s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib2B944CC0875C54F4B4FE74B3D1212E2Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib26328A6CDBAE422CC05FF9C56F4D20CEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib26328A6CDBAE422CC05FF9C56F4D20CEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5D7D9FAF3B52FED97D963D147DFA1D0Es1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibAF378526003471F9246FE54E13E4E185s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibAF378526003471F9246FE54E13E4E185s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib31660A12A3679C78904E4596549F39A1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib31660A12A3679C78904E4596549F39A1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib31660A12A3679C78904E4596549F39A1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD8473EBA57FB93FE3F8FFBEB6FFB19BEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD8473EBA57FB93FE3F8FFBEB6FFB19BEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD8473EBA57FB93FE3F8FFBEB6FFB19BEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibB660C50120AA929E7D603E0096A24D2Es1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE1562CF139AF65CC595689B077D321FEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE1562CF139AF65CC595689B077D321FEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib54269F4DC5DB5E7058420DF350ABD197s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib54269F4DC5DB5E7058420DF350ABD197s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib54269F4DC5DB5E7058420DF350ABD197s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE0F435013B125B1982B59137BD17ECACs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE0F435013B125B1982B59137BD17ECACs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE49FD1F76596A0832F29CCD3FE990CA6s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE49FD1F76596A0832F29CCD3FE990CA6s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6F95157BF46F9EA05A53364EA0B394C5s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6F95157BF46F9EA05A53364EA0B394C5s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib6F95157BF46F9EA05A53364EA0B394C5s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib00012CE327BA7807D97E8B241A6E4A60s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib00012CE327BA7807D97E8B241A6E4A60s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD740497E5B22D6D7AE5036D1D4BBB398s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD740497E5B22D6D7AE5036D1D4BBB398s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD740497E5B22D6D7AE5036D1D4BBB398s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib22583E78592313E5649867D83B7FDD36s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib728B63B9A1A4E614E344BC5038EA2BFBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib728B63B9A1A4E614E344BC5038EA2BFBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib48CBCF9999F36C95CBC04BF2615B5AB2s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib7C871FD15DA95F5A82089CBAA28058DCs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1A838CFC2ABB811CEC40D6CBE7351578s1
https://doi.org/10.1063/1.526596
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib26AAD218BCA2E569EF15E580BBC55BF0s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib26AAD218BCA2E569EF15E580BBC55BF0s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib23D2CDB22988F98AB1FF05AEF3D85584s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib23D2CDB22988F98AB1FF05AEF3D85584s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib184A3BC5C74CBC5F007D7072E42432A8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib32AA87CBD2CB5441B12E948A78BBA343s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibA83E43F7EBE6C53356DDA85DF7B66CA3s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibA83E43F7EBE6C53356DDA85DF7B66CA3s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibA83E43F7EBE6C53356DDA85DF7B66CA3s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibF145134D615918FBF9F61AAE1832F6E1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibF145134D615918FBF9F61AAE1832F6E1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibD945EB9EF55567B80A3CAE8D8066F6E6s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib3D2201566F2ED8E25AF19877B077121Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib3D2201566F2ED8E25AF19877B077121Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDC70B91D2B6965781EAE23F57FE8476Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDC70B91D2B6965781EAE23F57FE8476Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDC70B91D2B6965781EAE23F57FE8476Cs1
https://doi.org/10.1038/s41534-019-0196-1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib36AE173EEFB195286DB62A3043FB5959s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibFA1953E66DE599057938BDBF272B6997s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibFA1953E66DE599057938BDBF272B6997s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibBF67343DD02FFBFFE0AB5C0F6E80F743s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibBF67343DD02FFBFFE0AB5C0F6E80F743s1
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib3C7AF107FF6495DF4B996FC1806D159Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib3C7AF107FF6495DF4B996FC1806D159Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5108BBC311B1E2DF0CB290FEE624E44Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE735ECCD1194AD5EEF64A965AC2AF87Cs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEB6AE23A371A711B4724B1B2ACF0D82As1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEB6AE23A371A711B4724B1B2ACF0D82As1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib3B18007CDF4EB50463DE5871DE9AEAB9s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib139A00EEDE95896FA17AAEBBF9A20D82s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEDE38CB6FE35C62DB985A935366C38CEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibDF20CBFEB91685328ED522FC50F68A1Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib971115AF3C1A35D801A3DFFD1D0D81ACs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib971115AF3C1A35D801A3DFFD1D0D81ACs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib67017FED695BCA1B047527F247405E36s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib67017FED695BCA1B047527F247405E36s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1974699F6A6CABF1BEE4C8C573CAE0DBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1974699F6A6CABF1BEE4C8C573CAE0DBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1974699F6A6CABF1BEE4C8C573CAE0DBs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibB60131B981511A1DECEB634BA29E6023s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibB60131B981511A1DECEB634BA29E6023s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC493FEC726858581BEB8352ED5F9DF34s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC493FEC726858581BEB8352ED5F9DF34s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC493FEC726858581BEB8352ED5F9DF34s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5A9CFDCD6EBD85DAADB93AFCAADD91D8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5A9CFDCD6EBD85DAADB93AFCAADD91D8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5A9CFDCD6EBD85DAADB93AFCAADD91D8s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib46E6C1AC9DF52D90CA22C688E890729Fs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib0889539492B24E43D6E5ADC2B50FA2D2s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib0889539492B24E43D6E5ADC2B50FA2D2s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5672D4E6E8573804BB0EB289245A1941s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5672D4E6E8573804BB0EB289245A1941s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib5672D4E6E8573804BB0EB289245A1941s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC5CA0760FE1A937069674993C399B0F0s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE379974AD6B2A644862389967CFD994Bs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib771D53D7C183EB60F55C73FEB1792C37s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib771D53D7C183EB60F55C73FEB1792C37s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib771D53D7C183EB60F55C73FEB1792C37s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib10913570F5BEDCCF9C18BF844213F710s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib10913570F5BEDCCF9C18BF844213F710s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib43310F062419E7D5D977C4C4DD817380s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib83970AFC39D6C2B752C9F9486F70DABCs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib83970AFC39D6C2B752C9F9486F70DABCs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib10EA590D34CD351CFF2CE4D34F754A02s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib10EA590D34CD351CFF2CE4D34F754A02s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC17143A3043B09ADFF34ADF447DCDB48s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC75B51602C2CC1C7ED7E17A7EBA56AFEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC75B51602C2CC1C7ED7E17A7EBA56AFEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibC75B51602C2CC1C7ED7E17A7EBA56AFEs1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib71DC0918A7D28BD3BAC1B47714D27913s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib1145839F90CB133D61CFF94086E8D05Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibE5FAB339A1A1E296FE2C3545339D96B7s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEE595FE7B1B7C265CCF2CF255AB7DB7Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEE595FE7B1B7C265CCF2CF255AB7DB7Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibEE595FE7B1B7C265CCF2CF255AB7DB7Ds1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib11F0372AB25DF1E710231EB17CD14FC1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib11F0372AB25DF1E710231EB17CD14FC1s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4C2077AE315794377C253BDC5A37B183s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bib4C2077AE315794377C253BDC5A37B183s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibBF267FFF0958DCFFDB9167A8780F8AD4s1
http://refhub.elsevier.com/S0010-4655(22)00130-8/bibBF267FFF0958DCFFDB9167A8780F8AD4s1

	GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm
	1 Introduction
	2 JUQCS--G
	2.1 Simulating quantum computers on GPUs
	2.2 Benchmarks and scalings

	3 Applications
	3.1 Background
	3.1.1 Quantum annealing
	3.1.2 The quantum approximate optimization algorithm
	3.1.3 Exact cover

	3.2 Implementations
	3.2.1 QAOA
	3.2.2 AQA

	3.3 Results
	3.3.1 QAOA
	3.3.2 AQA
	3.3.3 Comparison of QAOA and AQA
	3.3.4 Scaling as a function of the problem size N

	4 Summary
	Declaration of competing interest
	Acknowledgements
	Appendix A Second-order initialization of the QAOA parameters
	References

