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We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich 
universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster 
with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum 
annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very 
coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly 
well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly 
optimization procedure altogether. Furthermore, we study the scaling of the success probability when 
using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error 
scales most favorably, surpassing the best result obtained from the QAOA.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The simulation of universal quantum computers requires a large 
number of matrix-vector updates, most of which are 2-component 
and 4-component tensor operations. As such, the task of simulat-
ing quantum computers is an ideal candidate to profit from recent 
developments in the GPU industry. We use a GPU-accelerated ver-
sion of our in-house software JUQCS [1,2], termed JUQCS–G, to 
benchmark JUWELS Booster, a cluster of 3744 NVIDIA A100 Tensor 
Core GPUs, integrated in the modular supercomputer JUWELS [3]. 
A dockerized version of JUQCS is available online [4].

JUWELS Booster is part of the JUWELS cluster-booster architec-
ture at the Jülich Supercomputer Centre (JSC) in which a cluster 
of multi-core nodes is connected via a high-speed network to a 
cluster of GPUs, the booster, which forms the basis of the modu-
lar supercomputer at JSC. The modular supercomputer architecture 
generalizes the cluster-booster concept by potentially interconnect-
ing a variety of modules with, among others, different acceleration 
technologies, AI-adapted nodes and storage devices. The modu-
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lar supercomputer concept allows for a seamless integration of 
quantum computing architectures and future neuromorphic sys-
tems to realize the vision of a holistic future hybrid supercomputer 
[5]. Such a system enables hybrid simulations involving quan-
tum and/or neuromorphic devices that open up new possibilities 
for demanding computing tasks in science and industry. This will 
eventually allow for hybrid computing paradigms in a production 
environment.

JUQCS is a massively parallel simulator [1,2,4,6] that has also 
been used for Google’s quantum supremacy demonstration [7]. 
Using JUQCS–G, we study the quantum approximate optimiza-
tion algorithm (QAOA) [8,9], a popular variational algorithm for 
near-term gate-based quantum computers, also known as noisy 
intermediate-scale quantum (NISQ) devices [10]. The prospect of 
producing useful results for NISQ devices has stimulated consider-
able interest in the scientific community [11–23].

The QAOA simulations, which were performed on the JUWELS 
Booster, used the CPUs to carry out the classical (optimization) 
part of the QAOA and the GPUs to carry out the quantum part 
formulated in terms of a quantum circuit. On the modular super-
computer architecture with a quantum module, the optimization 
could be performed on the CPUs of the JUWELS cluster or booster 
and the operations in the quantum circuit on the QPUs (quantum 
le under the CC BY-NC-ND license 
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Fig. 1. Distribution of the complex amplitudes of the state vector |ψ〉 on the GPUs across the compute nodes. Each GPU is handled by one MPI process. For each GPU, 
the leftmost qubit indices of the coefficients (the global qubits, separated from the local qubits by a space) represent the MPI rank that uniquely identifies the GPU in the 
supercomputer. This is indicated for the GPUs belonging to MPI rank 0 and 3 for a case with 10 global qubits. On each GPU, the complex amplitudes for each index of the 
remaining local qubits are stored. During non-local quantum gate operations, typically half of all complex amplitudes need to be transferred once between NGPU/2 pairs 
of GPUs (often across different compute nodes). For these transfers, the MPI communication scheme of JUQCS–G follows the original one described in [6], with the only 
qualitative change being that a CUDA-aware MPI implementation is used to transfer memory between the GPUs.
processing unit), enabling efficient quantum-classical hybrid com-
putations.

The QAOA can be related to a discretized version of quantum 
annealing (QA) [14,19,24,25]. QA is another popular paradigm of 
quantum computation [26–35] that is studied alongside the gate-
based model of quantum computation [36]. Special devices built to 
perform QA are the D-Wave quantum annealers. The largest exist-
ing quantum annealer is the D-Wave Advantage, which has 5000+ 
physical qubits [37] and has been used for quantum support vector 
machines [38,39] (see also [40]), in studies of stock markets [41], 
for computer vision [42], and for lattice gauge theory [43]. It has 
recently been benchmarked with 3D spin glass problems [44], gar-
den optimization problems [45] and exact cover problems [46]. In 
the present work, the same exact cover problems as in Ref. [46], 
derived from simplified optimization problems encountered in air-
plane scheduling, are used to analyze the large-scale simulation 
results produced by different physical models designed to solve 
such problems.

In this paper, we scrutinize the overlapping region between 
QA and the QAOA. We start from a coarse, second-order time-
discretization of QA that we call approximate quantum annealing
(AQA). We increase the time step that controls the discretization 
error (sometimes referred to as the Trotter error [47,48], although 
the formalism goes well beyond Trotter’s investigation [49], see 
[50–52]). Furthermore, we use JUQCS–G to study the scaling of 
the success probability when using AQA for exact cover problems 
with 30 to 40 qubits. Surprisingly, we find that, while the cases 
with smaller discretization error provide useful initializations for 
the QAOA, the cases with largest discretization error scale much 
better when increasing the number of qubits.

Ideas that are similar to AQA have been investigated before [19,
24,25,53]. In particular, in [25] a first-order discretized version 
of QA, referred to as Trotterized quantum annealing, was used as 
initialization for the QAOA. The authors studied the performance 
for p ≤ 10 QAOA steps and relatively small systems with N ≤ 12
qubits. Here, we study a second-order discretization of QA. We 
study not only the QAOA initialization but also the dynamics of 
AQA. Furthermore, we consider much larger systems with up to 
N = 40 qubits and up to n = 100 steps (corresponding to p = 101).

While it is almost trivial to simulate short QAOA gate circuits 
for less than 26 qubits on a modern PC, simulating the fairly 
lengthy circuits (5000+ gates) for the 40 qubits exact cover prob-
lems requires substantial supercomputer resources (and more than 
16TB of random access memory). The GPU-enabled software that 
we have developed in house enables us to perform such simu-
lations in a reasonable time span. Having data for 30–40 qubits 
allows us to assess the potential, e.g. the scaling behavior, of the 
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QAOA and AQA in a regime that was previously inaccessible (in 
practice).

This paper is structured as follows. In Section 2, we describe the 
GPU-accelerated universal quantum computer simulator JUQCS–G 
and show benchmarks of JUWELS Booster. In Section 3, we present 
applications to QA, AQA, and the QAOA. We summarize our find-
ings in Section 4.

2. JUQCS–G

In this section, we outline the central task performed by univer-
sal quantum computer simulators such as JUQCS in general, and 
its GPU-accelerated version JUQCS–G in particular. After this, we 
present benchmark results for JUWELS Booster.

2.1. Simulating quantum computers on GPUs

The basic unit of computation for a gate-based quantum com-
puter is a single qubit, described by two complex numbers |ψ〉 =
(ψ0, ψ1) that are normalized so that 〈ψ |ψ〉 = |ψ0|2 + |ψ1|2 = 1. By 
definition, an N-qubit system is described by 2N complex numbers

|ψ〉 = ψ0...00 |0 . . . 00〉 + ψ0...01 |0 . . . 01〉 + . . .

+ψ1...11 |1 . . . 11〉 , (1)

where |0 . . . 00〉 , . . . , |1 . . . 11〉 are the computational basis states 
[36] and the coefficients ψ0...00, . . . , ψ1...11 are normalized such 
that 〈ψ |ψ〉 = 1. For clarity, we explicitly write the 2N complex 
coefficients in the state |ψ〉 as a rank-N tensor ψqN−1···q1q0 with 
indices q j ∈ {0, 1}. In other words, an N-qubit system is described 
by a complex-valued, rank-N tensor, a tensor product of N two-
dimensional vectors.

For large-scale universal quantum computer simulations, the 
main difficulty lies in the management of all 2N complex num-
bers. For instance, for N = 42 using double precision floating-point 
numbers, the tensor ψqN−1···q1q0 occupies 16 × 242 B = 64 TiB of 
distributed memory.

JUQCS–G distributes the complex numbers over the memory of 
the GPUs as indicated in Fig. 1. Each GPU stores 2M coefficients 
of |ψ〉 in its local memory, i.e., each GPU stores the coefficients 
(ψqN−1···qM 0···0, . . . , ψqN−1···qM 1···1). For this reason, we call the right-
most M qubits qM−1 · · ·q0 local qubits. As a consequence, the total 
number of required GPUs is given by NGPU = 2N−M .

Since the complex numbers are distributed over multiple GPUs 
on different compute nodes, data has to be transferred over the 
network. This is necessary, for instance, if a particular part of the 
data on one node is required for the computation on another node. 
To exchange data between the GPUs on different compute nodes, 
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the Message Passing Interface (MPI) is used. MPI provides a standard 
for distributed memory computation and takes care of the commu-
nication, i.e., the sending and receiving of data between different 
compute nodes. For details, we refer the reader to the literature 
[54].

JUQCS–G uses CUDA-aware MPI to manage the distributed 
memory. Each GPU is controlled by one MPI process, whose rank 
r ∈ {0, . . . , NGPU − 1} is initially given by the leftmost N − M in-
dices of |ψ〉 in binary notation. Thus, the GPU with rank bin(r) =
qN−1 · · ·qM holds the coefficients (ψbin(r)0···0, . . . , ψbin(r)1···1). For 
this reason, we call the leftmost N − M qubits global qubits.

A quantum gate is a unitary operation that transforms some 
of the coefficients of |ψ〉. The most elementary quantum gate is a 
single-qubit gate, i.e., a 2 × 2 unitary matrix U = (uqq′). It trans-
forms the coefficients of |ψ〉 in terms of 2-component updates. For 
instance, a single-qubit gate on qubit j transforms the tensor |ψ〉
according to

ψqN−1···q j+1qq j−1···q0 ←
1∑

q′=0

uqq′ψqN−1···q j+1q′q j−1···q0 , (2)

for q = 0, 1. Similarly, a two-qubit gate is a 4 × 4 unitary matrix 
that operates on two indices of |ψ〉, and a three-qubit gate op-
erates on three indices, etc. A suitable set of one- and two-qubit 
gates suffices to construct a universal quantum computer (simula-
tor) [55,56]. The set of quantum gates implemented by JUQCS–G is 
documented in [1].

We do not use sparse matrix techniques but exploit the spe-
cial structure of single-, two- and three-qubit operations. We never 
store or operate on large dense matrices. To perform 2-component 
updates as expressed in Eq. (2), we loop over all pairs of elements 
of |ψ〉 and multiply each pair of elements with the same 2 ×2 ma-
trix (which depends on the particular gate). The grouping in pairs 
depends on the qubit that is being operated on. For the two-qubit 
operations, we loop over quadruples of elements of |ψ〉 and multi-
ply each quadruple of elements with the same 4 ×4 matrix (which 
depends on the particular gate). The time it takes to perform all 
these arithmetic operations is counted as “compute time”. As the 
size of the quantum computer increases, we need more and more 
compute nodes to store |ψ〉, and although the MPI communication 
is very efficient by itself, it takes an increasingly larger part of the 
elapsed time (but still scales approximately linearly, not exponen-
tially).

If a quantum gate acts on a global qubit, coefficients of |ψ〉 that 
are stored on different GPUs need to be combined with each other. 
This requires MPI communication between the GPUs. For circuits 
with many quantum gates involving global qubits, the MPI com-
munication may take a large part of the simulation time (cf. Fig. 3
below). For instance, a single-qubit gate on a global qubit requires 
the transfer of 2N/2 complex numbers (i.e., half of all memory) 
between pairs of GPUs. JUQCS–G minimizes the communication 
overhead by relabeling global and local qubits after such a global 
quantum gate. Thereby, the complex numbers need to be trans-
ferred over the network only once, and not back again after the 
transformation. Each GPU keeps track of the labeling of global and 
local qubits in a local permutation array. Further details of this op-
timal MPI communication scheme are explained in [6].

The keyword in the large-scale simulations performed by JUQCS 
is universal. It means that any quantum circuit for an N-qubit sys-
tem can in principle be simulated, as long as the circuit depth is 
not unreasonably long (unreasonably because then it would also 
not be executable on a gate-based quantum computer device). In 
the literature, this kind of simulation method is sometimes re-
ferred to as the Schrödinger simulation method, because the whole 
tensor ψqN−1···q1q0 (i.e., the whole wave function |ψ〉) is propagated 
3

through the quantum circuit. The simulation time grows linearly in 
the total number of gates.

In contrast to the Schrödinger simulation method, there is also 
the so-called Feynman simulation method [57–62]. Here, tensor net-
works are used to obtain only one (or a few) amplitude(s) of the 
final quantum state. One then sums over each path through the 
quantum circuit that would contribute to this amplitude. In prin-
ciple, much larger qubit systems can then be simulated (e.g., a 
128-qubit circuit was simulated in [2]). Of course, the kinds of cir-
cuits that can be simulated by such an approach are very restricted 
and not universal. The simulation time grows exponentially in the 
circuit depth and depends strongly on the number of Schmidt co-
efficients of multi-qubit gates (see the supplementary material of 
[7]). However, truncating Schmidt coefficients opens the possibility 
to simulate circuits with smaller fidelity. An overview of the limits 
of such simulations is given in [63].

A combination of both Schrödinger and Feynman approaches 
can be used to simulate larger circuits of the quantum supremacy 
experiment [7], and has recently been used on a cluster of GPUs 
to spoof the quantum supremacy test [64].

2.2. Benchmarks and scalings

The large amount of MPI communication required for simulat-
ing universal quantum computations makes simulating quantum 
computers an ideal candidate to benchmark large supercomput-
ers. Combined with the many tensor operations required (cf. Sec-
tion 2.1), JUQCS–G is a very versatile application to benchmark 
Tensor Core GPUs. In this section, we report benchmark results for 
JUQCS–G running on JUWELS Booster, a cluster with 3744 NVIDIA 
A100 Tensor Core GPUs distributed over 936 compute nodes (see 
Fig. 1).

Each A100 GPU has a local memory of 40 GiB, so the maximum 
number of local qubits is 31. For quantum circuits with N ≥ 32
qubits, MPI communication between the GPUs is necessary. For the 
present benchmark study, we simulate quantum circuits for 32–42
qubits on 2–2048 GPUs.

In Fig. 2, we show simulation results for QAOA circuits for 
32–40 qubit exact cover problems (the details of which are de-
scribed in the following section). We see that the computation 
time (i.e., the run time excluding the time required for the MPI 
communication) stays approximately constant with increasing sys-
tem size, indicating ideal weak scaling. The MPI communication 
time increases roughly linearly. Most importantly, none of these 
simulation times grow exponentially in the number of qubits. In 
this sense, JUQCS–G beats the exponential growth associated with 
quantum circuit simulations.

To compare timing data of different runs of problems belong-
ing to the same class, it is expedient to express this data in a way 
that takes into account that the number of gates depends on the 
problem size N . In the present case, we take the number of gates 
ngates(32) for the smallest corresponding problem instance as ref-
erence and define

Normalized elapsed time = ngates(32)

ngates(N)
Telapsed(N) . (3)

Studying the strong scaling results for 34 qubits, we find ideal 
strong scaling. As the number of GPUs increases, the normalized 
elapsed time decreases exponentially. When doubling the number 
of GPUs used, the normalized elapsed time is (almost perfectly) 
halved.

Looking closely at the 40-qubit strong scaling results in Fig. 2
(rightmost bars), we see that the drop in simulation time from 512 
to 1024 GPUs is in fact better than expected. For perfect strong 
scaling, we would expect the simulation time to decrease by a 
factor of 2 when doubling the number of GPUs (in practice, this 
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Fig. 2. Weak and strong scaling results for QAOA on JUWELS Booster using 4 NVIDIA A100 GPUs per node. Shown is the normalized elapsed time given by Eq. (3) as a 
function of the number of GPUs. The problem size given by the number of qubits and the memory per GPU are indicated on the bottom axis. “Compute” refers to the elapsed 
time for executing the quantum circuit only. “MPI” refers to the elapsed time for communication plus the elapsed time to prepare and postprocess MPI buffers. There is no 
overlap between computation and communication. (For interpretation of the colors in the figure(s) and table(s), the reader is referred to the web version of this article.)

Fig. 3. The same as Fig. 2 but for the Hadamard benchmark circuits (H⊗N )11 . In this case, the largest runs for 40–42 qubits were repeated several times to estimate the 
fluctuations due to different node allocations; they were on the order of 1 second and thus negligible (data not shown). “Compute” refers to the elapsed time for executing 
the quantum circuit only. “MPI” refers to the elapsed time for communication plus the elapsed time to prepare and postprocess MPI buffers. There is no overlap between 
computation and communication.
decrease would be expected to be even a little less). Going from 
512 to 2048 GPUs, i.e., using 4 times as many GPUs, brings the 
normalized elapsed time down by almost a factor of 4 as expected. 
This holds for the computing time as well as for the MPI com-
munication time. However, we observe that the time needed with 
1024 GPUs is only a third of the time needed with 512 GPUs, so 
much better than the theoretical optimum. Note that the unex-
pected behavior can be attributed to the MPI communication part 
only. Considering only the computing time, we still observe the ex-
pected scaling. As this run was performed in October 2020 during 
the early testing period of JUWELS Booster, we assumed that an 
explanation for the behavior might be found in an irregularity in 
the DragonFly+ topology of the communication network.

Therefore, we repeated the large-scale benchmark in February 
2021 after JUWELS Booster went into production. This time, we 
used quantum circuits consisting only of Hadamard gates on each 
qubit, repeated 11 times in a row, (H⊗N)11. Such circuits have 
been found to be well-suited for both benchmarking gate-based 
quantum computers [65] and universal quantum computer simu-
lators [1]. They create uniform superpositions over all N qubits 
4

and require exchanging 2N/2 complex numbers over the whole 
GPU network for each global single-qubit H gate. Since the to-
tal number of gates as a function of N is not constant, we need 
to make the benchmark results for different N relatable by nor-
malizing the run times w.r.t. the 32-qubit version. For instance, 
as the 32-qubit circuit has 352 H gates and the 42-qubit circuit 
has 462 H gates, the corresponding normalization factor is given 
by 462/352 ≈ 1.31. The 11-fold repetition of the Hadamard gates 
makes potential GPU/CUDA/MPI initialization times negligible.

The results of this second benchmark are shown in Fig. 3. We 
see that in this case, the computation times show nearly ideal scal-
ing, i.e., the elapsed time for increasing qubit number and number 
of used GPUs stays approximately constant (ideal weak scaling) 
and for constant qubit numbers, doubling the number of used 
GPUs halves the computation time (ideal strong scaling) in the 
34-qubit case as well as in the 40-qubit case. Also for the MPI 
communication time, the results follow the theoretical expectation.

To compare the speedup over the CPU-based version of JUQCS, 
JUQCS–E [1], we also report results for the normalized run times 
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Table 1
Comparison of the GPU-based simulator JUQCS–G (first row) and the CPU-based 
simulator JUQCS–E [1] (second to last row) for the largest systems using the 
Hadamard benchmark circuits (H⊗N )11 . The time ttotal is the run time spent for 
the total simulation, normalized by the number of gates with respect to the 32-
qubit case (see Eq. (3)). The time tMPI is the elapsed time for communication plus 
the elapsed time to prepare and postprocess MPI buffers. JUQCS–E uses all cores of 
the CPUs on each node.

qubits nodes processes hardware normal. ttotal [s] tMPI [s]

42 256 1024 GPU 1.31 149.4 122.1
42 256 2048 CPU 1.31 2632.4 1297.7
42 512 4096 CPU 1.31 1500.4 763.4
43 512 4096 CPU 1.34 2714.4 1343.3

for the largest circuits in Table 1 using only CPUs. In this mode of 
operation, JUWELS Booster can also run 43-qubit circuits.

For the 42-qubit case, we see that the normalized run time on 
2048 CPUs, ttotal = 2632.4 s, is a factor of 18 larger than the GPU-
accelerated version with ttotal = 149.4 s (also shown in Fig. 3). 
Furthermore, after subtracting the MPI communication time tMPI, 
the speedup due to the GPU acceleration for the computation-
only part is 49. This is a very significant improvement in terms of 
the computational resources required for the simulations. Clearly, 
large-scale quantum circuit simulations can tremendously benefit 
from recent GPU developments.

3. Applications

In this section, we use JUQCS–G to study the quantum com-
puter applications QA, AQA, and the QAOA. The QAOA work pre-
sented is, in spirit, similar to the work reported in Ref. [14]. How-
ever, the largest optimization problems (16 variable MaxCut and 
18 variable 2-SAT) studied in Ref. [14] are much smaller (recall the 
exponential dependence on the number of variables) than the 40-
variable exact cover problems studied in the present manuscript.

We first outline the mathematical background and its imple-
mentations, and then present the simulation results.

3.1. Background

In this section, we discuss the methods that we used in our 
studies. First, we briefly review the most important aspects of QA 
and the QAOA in Sections 3.1.1 and 3.1.2, respectively. The defini-
tion of the exact cover problem, which is the class of problems 
that we study in this paper, is given in Section 3.1.3.

3.1.1. Quantum annealing
QA was initially intended as an algorithm for conventional com-

puters [26–28]. Over time, it has evolved into the idea of a quan-
tum computing device that works fundamentally different from 
the gate-based quantum computer.

The concept of QA is based on the adiabatic theorem [67,68]. 
For this reason, a QA device is also called adiabatic quantum com-
puter. Although slightly different concepts are sometimes asso-
ciated with QA and adiabatic quantum computation, the basic 
working principle is the same: The quantum system (consisting of 
qubits) is prepared in the ground state of an initial Hamiltonian 
such as

H I = −
N−1∑
i=0

σ x
i , (4)

whose ground state is given by |ψinit〉 = |+〉⊗N where |+〉 = (|0〉 +
|1〉)/√2 is the uniform superposition of |0〉 and |1〉. During the 
time evolution, the Hamiltonian changes according to
5

Fig. 4. Annealing schedule of the DW_2000Q_6 quantum annealer, taken from [66].
The annealing functions A(s) (blue line) and B(s) (yellow line) describe the evolu-
tion of the QA Hamiltonian given in Eq. (5).

H(s) = A(s)H I + B(s)HC , s = t/tanneal, (5)

where tanneal is the time used for the annealing process, and the 
two annealing functions A(s) and B(s) fulfill A(0) 
 B(0) and 
A(1) � B(1). An example annealing schedule is shown in Fig. 4, 
which is also used to initialize the variational QAOA parameters 
(see below).

The final Hamiltonian in Eq. (5), HC , represents an optimization 
problem that is to be solved. This means that the ground state of 
HC encodes the solution of a certain optimization problem. Here, 
we choose HC to be the Ising Hamiltonian

HC =
N−1∑
i=0

hiσ
z
i +

∑
i< j

J i jσ
z
i σ z

j . (6)

The idea is that if the annealing process described by Eq. (5)
is carried out at zero temperature and sufficiently slowly so that 
the adiabatic theorem holds, then the quantum system stays in 
its instantaneous ground state. Thus, at the end of the annealing 
process, the quantum system ends up in the ground state of the 
Hamiltonian HC . Measuring the qubits would then yield the an-
swer to the initial optimization problem.

In practice, on a quantum annealer not only the annealing time 
tanneal determines the probability of success (i.e., the probability 
that the system ends in its ground state and not in an excited 
state), but also an environment at finite temperature, control errors 
and precision limits have an influence on it [30,69–75].

3.1.2. The quantum approximate optimization algorithm
The QAOA was introduced by Farhi et al. [8]. It is a variational 

method that is suitable for execution on a gate-based quantum 
computer. The objective is to find the ground state (or a low en-
ergy state) of a problem Hamiltonian such as HC given by Eq. (6)
that represents an optimization problem. The state that is prepared 
by the QAOA quantum circuit is given by

|β,γ 〉 =
p∏

k=1

e−iβk H D e−iγk HC |+〉⊗N , (7)

where γ = (γ1, ..., γp) and β = (β1, ..., βp) are the 2p variational 
parameters that have to be optimized, and H D is a mixing Hamilto-
nian that is commonly chosen as H D = −H I (cf. Eq. (4)), i.e.,

H D =
N−1∑
i=0

σ x
i . (8)

Note that other choices have also been proposed [76,77].
It is worth mentioning that for this choice, the QAOA parame-

ters βk can be reduced to the range [0, π). For γk , however, such 
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a periodicity condition depends on the minimum spacing between 
the eigenvalues of HC . In other words, the range of values for γk
depends on the particular problem instance defined by hi and J i j
(see below).

For a given number of steps p, the energy of the optimized 
variational state (E∗

p = minβ,γ 〈β,γ | HC |β,γ 〉) is lower than the 
energy of the optimized variational state with p − 1 steps [8].

However, it has been found that the optimization of the vari-
ational parameters can be rather inefficient. Therefore, one often 
tries to use the observation that the optimal parameters βk and γk
seem to follow certain patterns [14,15,19,78–80]. Here, we investi-
gate these patterns in relation to QA and their interpretation as an 
optimized annealing scheme (see also [14,19,25]).

3.1.3. Exact cover
The exact cover problem is an NP-complete problem [81] that 

has become a popular choice to study optimization using quantum 
computing systems [15–17,46,82–86]. Exact cover problems belong 
to the class of set covering and partitioning problems that is cov-
ered in a vast amount of literature in Operations Research (see 
e.g. [87,88]).

In this paper, we study the instances of exact cover problems 
used in [46]. In matrix form, they are written as

min
xi=0,1

F−1∑
f =0

(
N−1∑
i=0

aif xi − 1

)2

, (9)

where a ∈ {0, 1}N×F is the Boolean problem matrix that defines the 
exact cover instance, and xi are the problem variables. Intuitively, 
the solution x ∈ {0, 1}N of Eq. (9) selects rows of a in such a way 
that in each column of the selected rows, the entry 1 is covered 
exactly once, and all other entries are 0.

We study exact cover problems with 30 to 40 variables (qubits) 
and F = 472 terms. For each problem size, we have four different 
instances. Problem instances are labeled by their qubit number and 
an additional label from 0 to 3 in brackets, such as problem 30(0).

To find a problem Hamiltonian HC of the form of Eq. (6), whose 
ground state represents the solution to Eq. (9), we replace the 
problem variables according to

xi �→ (1 + σ z
i )/2. (10)

Denoting the −1 (+1) eigenstate of σ z
i as |0〉 (|1〉), we can rep-

resent the problem variable xi by the qubit state |xi〉. Thus, the 
replacement Eq. (10) yields a diagonal Hamiltonian whose eigen-
values take all possible values of the objective function in Eq. (9). 
Consequently, the ground state of HC (i.e., the state with minimum 
eigenvalue) is the solution to Eq. (9). For this reason, we also de-
fine the success probability for these problems as the probability 
to find the system in the ground state (note that for all problem 
instances that we study in this paper, the ground state is unique 
[46]).

After multiplying out the square, the Hamiltonian can be ex-
pressed in the form of Eq. (6) plus an additive constant C (see [46]
for the calculation), yielding

hi =
∑

j

1

2
(aaT )i j − (ab)i , (11)

J i j = 1

2
(aaT )i j , (12)

C = bT b + 1

2

∑
i< j

(aaT )i j + 1

2

∑
i

((aaT )ii − (2ab)i) , (13)

where b = (1, . . . , 1)T is an F -dimensional vector of ones.
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As a and b in Eqs. (11)–(13) contain only zeros and ones, we 
know that hi and J i j vary at most by half integers. Therefore, the 
range of values for γk can be reduced to [0, 2π) (because γk �→
γk + 2π only causes a global phase in the QAOA state in Eq. (7)).

For all AQA and QAOA applications (except the grid scan in 
Fig. 5 below), however, we rescale the parameters {hi}, { J i j} and 
C to a uniform parameter range by dividing them by

r = max

{
max

[
max{hi}

hmax
,0

]
,max

[
min{hi}

hmin
,0

]
,

max

[
max{ J i j}

Jmax
,0

]
,max

[
min{ J i j}

Jmin
,0

]}
, (14)

where hmax = −hmin = 2 and Jmax = − Jmin = 1. Note that the 
same normalization is also performed when solving such problems 
on the D-Wave quantum annealer [46,89]. This does not change 
the solutions of the problems. However, it brings the energies of 
different problem instances on a uniform scale. This in turn im-
proves the optimization of the QAOA parameters, and it also allows 
the use of the same AQA time step τ (see below) for different 
problem instances.

3.2. Implementations

In this section, we discuss how quantum physics simulations 
are used to carry out the QAOA and AQA.

3.2.1. QAOA
We initialize the 2p variational QAOA parameters βk and γk in 

Eq. (7) according to the second-order Suzuki-Trotter decomposi-
tion. This amounts to (see Appendix A)

βk = −τ (A(sk+1) + A(sk))/2, k = 1, ..., p − 1, (15)

βp = −τ A(sp)/2, (16)

γk = τ B(sk), k = 1, ..., p, (17)

where sk = (k −1)/(p −1) (slightly different from Ref. [14]) and we 
take A(s) and B(s) from the DW_2000Q_6 annealing schedule [66]
(see Fig. 4). This procedure is motivated by the relation between 
the QAOA and QA as discussed in more detail in [14] (see also [25]
where the first-order case is discussed).

Given values for the variational parameters β and γ , JUQCS–G 
computes the variational state |β,γ 〉 given in Eq. (7), where the 
exponentials exp(−iβk H D) = ∏

i exp(−iβkσ
x
i ) are computed as a 

sequence of rotations around the x axis with angle 2βk , and the 
exponentials exp(−iγk HC ) are computed as a sequence of rota-
tions around the z axis with angle 2γk and controlled-Z gates.

JUQCS–G also computes the probability of the solution state 
in the variational state |β,γ 〉 and the energy expectation value 
E p(β, γ ) = 〈β,γ | HC |β,γ 〉. In the optimization phase of the QAOA, 
this energy is passed to the optimizer (we use several optimizers 
from the scipy library [90]; see below). The optimizer then pro-
poses new values for the variational parameters which are in turn 
passed to JUQCS–G. If this optimization loop does not reach con-
vergence, we use an additional stopping criterion of a maximum 
of 200 calls to JUQCS–G.

We note that in practice, it is only possible to optimize for the 
energy E p and not for the success probability. Since we use a state-
vector simulator and know the ground state, we could in principle 
also optimize for the probability to observe the ground state. How-
ever, in our benchmark, we consider the realistic situation that we 
do not know the ground state and thus optimize for the energy. 
We compute the probability of the ground state in a given varia-
tional state only as a measure of success.

For optimization problems, often the approximation ratio is also 
considered as a measure for the performance of the QAOA. In our 
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case, however, only finding the unique ground state is considered 
as success since none of the excited states encodes a valid solution 
to the exact cover problem.

3.2.2. AQA
To introduce the basic idea of AQA, we first review how the 

time evolution of a QA process is simulated. This allows us to de-
scribe in what sense the description becomes “approximate”, and 
when the simulation of QA enters the regime of what we call AQA.

In essence, a simulation of QA requires the solution of the time-
dependent Schrödinger equation (TDSE), i∂t |ψ(t)〉 = H(t) |ψ(t)〉, 
with a time-dependent Hamiltonian H(t), such as the QA Hamil-
tonian given in Eq. (5). In principle, but also in practice, the time-
discretized TDSE can be expressed as a quantum gate circuit which 
can then be processed by JUQCS–G. However, for convenience (and 
also as a check on the JUQCS data), we often solve the TDSE with 
the quantum spin dynamics simulator (QSDS) (in house software 
with the MPI communication scheme taken from JUQCS but with-
out GPU implementation). QSDS solves the TDSE for the generic 
spin-1/2 Hamiltonian

HQSDS(t) = −
∑

α=x,y,z

⎛⎝∑
i< j

J̃αi j (t)σ
α
i σα

j +
N−1∑
i=0

h̃α
i (t)σα

i

⎞⎠ , (18)

where N is the number of spins (qubits). For the optimization 
problems at hand, we have

h̃x
i (t) = A(t/tanneal), (19)

h̃z
i (t) = −B(t/tanneal)hi, (20)

J̃ z
i j(t) = −B(t/tanneal) J i j, (21)

where the annealing functions A and B are shown in Fig. 4, and hi
and J i j encode the problem instance as before.

QSDS solves the TDSE by time stepping using the second-order 
Suzuki-Trotter formula [91,92]

|
((l + 1)τ )〉 =
{

exp

[
iτ

2

∑
α=x,z

N−1∑
i=0

h̃α
i (lτ )σα

i

]

× exp

⎡⎣iτ
∑
i< j

J̃ i j(lτ )σ z
i σ z

j

⎤⎦
×exp

[
iτ

2

∑
α=x,z

N−1∑
i=0

h̃α
i (lτ )σα

i

]}
|
(lτ )〉 , (22)

for l = 0, . . . , n (such that tanneal = (n + 1)τ ). Note that the ac-
tion of each of the matrix exponentials in Eq. (22) on any state 
vector can be computed exactly. For the initial state, we take 
|
(0)〉 = |+〉⊗N . Apart from collecting all single-spin terms of the 
Hamiltonian Eq. (18) into the same matrix exponential, the struc-
ture of the QAOA (cf. Eq. (7)) is the same as that of Eq. (22).

The basic idea of AQA is to solve the TDSE with a time step τ
which is too large to yield an accurate time evolution of a gen-
uine QA process. Moreover, the number of time steps n is taken 
to be rather small. Therefore the corresponding “annealing time” 
is rather short in which case the time evolution is unlikely to be 
adiabatic.

In other words, we do not rely on the adiabatic theorem but 
hope that with a relatively small number of factors in the prod-
uct formula with a relatively large time step, we can nevertheless 
generate a final state which is close to the ground state of the 
problem Hamiltonian. Clearly, AQA is a heuristic method, partially 
motivated by findings [14,15,19,78,79] that optimal values for the 
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variational parameters βk and γk were often found to follow curves 
which resemble such an approximate annealing schedule. For AQA, 
we use again Eqs. (15)–(17) but with the convention: sk = k/n for 
k = 0, ..., n.

For each step, AQA and QAOA perform exactly the same num-
ber of single-qubit and two-qubit gates. Only the single-qubit gates 
may require exchange of data among MPI processes. In our AQA 
simulations, we also compute the spin expectation values during 
the time evolution. In terms of computational effort, AQA for a 
fixed n (i.e. n + 1 steps since we start counting at 0) is equivalent 
to a single evaluation of a QAOA circuit with p = n + 1.

3.3. Results

In this section, we present the simulation results on the QAOA, 
AQA, and a comparison between them.

3.3.1. QAOA
We start with QAOA for p = 1 by studying the energy land-

scape and the success probability for a 30-qubit problem instance 
(named 30(0)). For this purpose, we perform a scan of the pa-
rameters β ∈ [0, π) and γ ∈ [0, 2π) and compute the energy as 
well as the success probability obtained for the QAOA circuit (note 
that, as argued in Section 3.1.3, these parameter intervals cover the 
range of different QAOA trial states). The results are shown in the 
left column of Fig. 5 for the energy (top) and success probability 
(bottom). The middle column shows zooms with finer grids into 
regions around the energy minimum and the success probability 
maximum. The right column shows zooms into another region of 
interest noticeable in Fig. 5(a).

The point with the highest success probability is marked with 
a cross and the point with the lowest energy is marked with a 
circle. Although these points are relatively close, the energy is very 
different. The point with the highest success probability is even 
close to an energy maximum. However, the point at the energy 
minimum still has a relatively high success probability. In the right 
column, which shows the zoom in the vicinity of another local 
energy minimum, we find that the success probability is quite low 
(see the scale of the color bars). If, during the optimization process, 
the minimizer gets stuck in such a local minimum, the probability 
to observe the ground state will often be very small.

We find that the optimal parameters β∗ and γ ∗ in this case 
are large (almost π ) and small (almost 0), respectively, as would 
be the values for A(0) and B(0) in an annealing scheme. This is 
encouraging for our annealing scheme initialization for QAOA with 
p > 1.

Fig. 6 shows the paths that different optimization algorithms 
take when starting from the point with minimum energy found in 
the scan (the black circle in Fig. 6(b)). The optimization algorithms 
are standard optimizers provided by scipy [90]: sequential least 
squares programming (SLSQP), the gradient-free Nelder–Mead al-
gorithm [93] (NM), the L-BFGS-B algorithm [94,95], and the con-
jugate gradient algorithm [96] (CG) (see [22] for a thorough com-
parison of different optimizers for the QAOA). Note that for the 
optimization, we use the rescaled version of the problem accord-
ing to Eq. (14) (here r = 36.75); otherwise small variations in γ
led to large fluctuations in the energy and no optimizer except NM 
was able to converge to the energy minimum (data not shown).

Fig. 6 shows that with rescaling, all optimizers converge to the 
energy minimum, although L-BFGS-B and CG require 3–6 times 
more quantum circuit simulations than SLSQP and NM. Note, how-
ever, that the convergence to the energy minimum depends cru-
cially on the good initial point; other random initial points pro-
duced much worse results (data not shown). Furthermore, it is 
worth noting that none of the optimizers comes across the point 
with the largest success probability (the cross in Fig. 5(b)); only 
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Fig. 5. (a)–(c) Energy landscape and (d)–(f) success probability landscape for QAOA with p = 1 for the 30-qubit exact cover problem 30(0). The left column shows the 
landscapes obtained by scanning a 64 × 64 grid β ∈ [0, π) and γ ∈ [0, 2π). The middle column shows a zoom into the area around the minimum energy found in the scan. 
The largest success probability (cross) and the energy minimum (circle) in this area are indicated. Interestingly, these two points are not at the same location. The right 
column shows a zoom into another area of interest around γ ≈ π and β � π .
NM and CG venture once into a region with better success prob-
ability (the right panels in Fig. 6). Obviously, this is not a flaw of 
the optimizers (which can only optimize for the energy in prac-
tice), but rather a deficiency of variational algorithms in general.

We take a number of QAOA steps p ≤ 13 and minimize the 
cost function 〈β,γ | HC |β,γ 〉 w.r.t. βk and γk , as one would do for 
QAOA running on genuine quantum hardware. The hope is then 
that by minimizing the cost function, we will also obtain relatively 
large values for the success probabilities. In Table 2, we present 
the results for a set of exact cover instances.

The QAOA results for p = 7, 13 are encouraging in the sense 
that the success probabilities are relatively large, i.e., much larger 
than 2−N which would be the probability to pick the correct solu-
tion from a uniform distribution at random. However, the number 
of JUQCS–G calls required to obtain such values is also fairly large. 
The numbers in parentheses indicate the number of JUQCS–G calls 
corresponding to the highest observed success probability. Almost 
all runs have been terminated after 200 JUQCS–G calls (black en-
tries in Table 2). Runs which were terminated by the minimizer 
(red entries) have a substantially lower success probability (smaller 
than 4%), suggesting that the minimizer became stuck in a local 
minimum.

We also performed some QAOA simulations with p = 3. We 
observed that for problem instance 30(0), the achieved success 
probability was smaller by a factor of 10–20 than in the p = 7 and 
p = 13 cases after using a similar number of JUQCS–G calls. For 
larger problem instances, the minimizer seemed to get stuck in lo-
cal optima as the obtained success probabilities were smaller than 
1%. We thus concluded that p = 3 would be too small for larger 
problem instances and we did not proceed with p = 3.

3.3.2. AQA
A representative AQA result for a 40-variable exact cover prob-

lem is shown in Fig. 7. In this simulation, we chose n = 50 and 
the time step τ = 0.4 ns, corresponding to a total annealing time 
of tanneal = 20.4 ns. This annealing time is very short compared to 
the annealing times commonly used by D-Wave quantum anneal-
ers (orders of μs).

In Table 3 we present the data of the AQA simulations with 
n = 50 and τ = 0.4 ns for exact cover problems with 30, 32, ..., 40 
variables. Column six of Table 3 shows that the success probability 
systematically decreases as the number of qubits increases. This 
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decrease is what one would expect on the basis of the Landau-
Zener model and the assumption that the minimal spectral gap 
decreases with the system size. However, AQA uses a time step of 
τ = 0.4 ns that may actually be too large to justify an interpreta-
tion in terms of the Landau-Zener model. Table 3 also shows that 
the computational resources required for QSDS to perform these 
AQA simulations can be considerable.

As already observed earlier [14] and also observed in the AQA 
simulations, solving the TDSE for model parameters that pertain 
to D-Wave quantum annealers requires annealing times of the or-
der of nanoseconds to obtain success probabilities of 1% or bet-
ter. This observation leads to the conclusion that for the exact 
cover problems studied here, the annealing time required by TDSE 
solvers is much shorter than the typical annealing times used by 
D-Wave quantum annealers, which are of the order of microsec-
onds (see also [97]). Of course, the TDSE simulations deal with a 
closed quantum system, free of the interactions with other degrees 
of freedom which are affecting the operation of real QA devices. 
Nevertheless, if technically possible, it would be of interest to per-
form this kind of very fast annealing on genuine quantum annealer 
hardware. Finally, it should be mentioned that the wall-clock time 
required by QSDS (or JUQCS) to cover the nanosecond time span 
is much larger than a few microseconds, see Table 3. Therefore, 
D-Wave quantum annealers are very fast simulators in comparison 
to the software simulators running on conventional semiconductor 
hardware.

3.3.3. Comparison of QAOA and AQA
Results to compare QAOA and AQA are presented in Fig. 8(a). It 

shows the success probability as a function of the number of AQA 
steps 5 ≤ n ≤ 100 for different values of τ . Additionally, the arrows 
for p = 6 and p = 13 show the results obtained after optimizing 
the corresponding β and γ with the QAOA (using SLSQP) after 200 
JUQCS–G calls. The initial and final values for β and γ are shown 
in Fig. 9.

We compare QAOA and AQA in terms of computational work. 
Performing QAOA with p steps and m optimization cycles (i.e., m
calls to JUQCS–G) needs computational work proportional to m × p. 
Performing AQA with n is equivalent to performing QAOA with p =
n + 1 and m = 1 (as AQA only needs a single call to JUQCS–G), so 
the computational work equivalent for AQA is n +1. Thus, for QAOA 
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Fig. 6. Comparison of different classical optimizers used to optimize the variational 
parameters β and γ for QAOA with p = 1 for the 30-qubit exact cover problem 
30(0). The optimizers are (a) SLSQP, (b) NM, (c) L-BFGS-B, and (d) CG (see main 
text). The starting point for the optimization is the point with minimal energy found 
in the initial scan (black circles, corresponding to the black circles in Figs. 5(b) and 
(e)). For each optimizer, the left (right) panel shows the energy (success probability) 
landscape. The number of JUQCS–G calls used by each optimizer is indicated in 
the top left corner of each panel. The parameters for each call are shown with 
black crosses. The order in which the parameters are evaluated by the optimizers is 
indicated with arrows with colors evolving from black (for the first JUQCS–G call) 
to white (for the last JUQCS–G call). Note that, although the rescaled version of the 
problem was used for the optimization (see Eq. (14); here r = 36.75), we plot γ /r
and energy ∗ r to make the scale comparable with the grid scan in Fig. 5.

to compete with AQA, it should use m < (n + 1)/p optimization 
cycles to reach a similar success probability.

However, as already mentioned and seen in Table 2, the number 
of JUQCS–G calls m required to obtain high success probabilities 
with the QAOA is fairly large. And as Fig. 8(a) shows, sometimes 
even m = 200 optimization cycles (with computational work 200p) 
are not enough to reach the success probabilities that AQA reaches 
already after n = 100 steps. Hence, for the exact cover instances 
considered, QAOA cannot compete with AQA in terms of computa-
tional efficiency.

For AQA, we find that the success probability increases for in-
creasing number of steps n. As Fig. 8(b) shows, the main increase 
in the success probability is due to the increased annealing time. 
The success probability also increases with τ , up to a certain point 
where no further improvement is made. For τ = 0.8 ns, we find 
that for a fixed annealing time the probability is substantially 
lower than for the other values of τ . Here, the time step τ = 0.8 ns
9

Table 2
QAOA results for exact cover instances, obtained by minimizing the energy expecta-
tion value using SLSQP. QAOA quantum gate circuits were executed using JUQCS–G. 
The success probability is determined by computing the probability of the ground 
state after each iteration and searching for the iteration number (given in parenthe-
ses) for which this probability is largest. The number of JUQCS–G calls was limited 
to 200. Red colored entries: The run was terminated by the minimizer that was 
probably stuck in a local minimum; black colored entries: The run was terminated 
when the 200 JUQCS–G calls had been reached. For p = 13, the calculations are too 
costly to warrant filling all missing entries.

qubits success probability (JUQCS–G calls)

(instance) p = 7 p = 13

30(0) 0.3398 (165) 0.6214 (187)
30(3) 0.3708 (196) -
32(0) 0.2841 (195) -
32(3) 0.2745 (192) 0.4741 (193)
34(0) 0.1924 (190) -
34(3) 0.2251 (196) 0.5075 (187)
36(0) 0.1081 (191) -
36(3) 0.1545 (175) 0.0387 (94)
38(0) 0.0901 (187) -
38(3) 0.1200 (174) 0.0159 (124)
40(0) 0.0068 (71) 0.0088 (123)
40(3) 0.0061 (38) -

Fig. 7. AQA results for the 40-variable exact cover instance 40(0). Shown are the 
spin expectation values 〈σ z

i (s)〉 during the time evolution generated by Eq. (5), as 
a function of the normalized annealing time s = t/tanneal . Different lines correspond 
to different qubits i = 0, . . . , N − 1 for N = 40. The success probability to generate 
the state corresponding to the solution of this instance is 0.038. The number of 
steps is n = 50 and the time step is τ = 0.4 ns.

Table 3
AQA results (success probabilities Psuccess) obtained by solving the TDSE for Hamil-
tonians derived from exact cover instances. Required hardware resources as well as 
the total run time t are also listed. The annealing scheme is obtained by discretizing 
the DW_2000Q_6 annealing scheme. QSDS was used with n = 50 and τ = 0.4 ns, 
corresponding to an annealing time tanneal = 20.4 ns. All data was generated on 
JUWELS-CLUSTER [3], except column seven which lists the elapsed times tFE that it 
took four A100 GPUs to solve the exact cover instances by full enumeration.

instance nodes processes cores t [hh:mm] Psuccess tFE

30(0) 64 1024 3072 00:08 0.417 1.7 s
32(3) 256 4096 12288 00:14 0.237 1.7 s
34(3) 256 4096 12288 00:52 0.193 2.4 s
36(3) 256 4096 12288 03:50 0.110 6.0 s
38(3) 256 4096 12288 16:40 0.085 22.3 s
40(0) 1024 16384 49152 24:40 0.038 91.8 s

is too large to justify even a crude approximation of an annealing 
schedule.

We believe that AQA is best seen as a viable heuristic, requiring 
a few numerical experiments to optimize the parameters (in con-
trast to the QAOA which usually needs many iterations to obtain 
a reasonable result). To some extent, Fig. 8(b) gives a hint for an 
explanation why AQA works well. For small time steps (τ = 0.1), 
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Fig. 8. Comparison of AQA and QAOA, using exact cover instance 30(0). (a) Success 
probability as a function of n (AQA, bottom axis) and p (QAOA, top axis). In terms of 
computational effort, AQA with n steps is equivalent to a single JUQCS-call for the 
QAOA circuit with p = n + 1, so they are shown together. AQA results are indicated 
by markers (lines are guides to the eye). QAOA results are indicated by the arrows 
showing the improvement due to the optimization of the variational parameters 
from the AQA initialization. (b) Success probability obtained by AQA as a function 
of “annealing time” tanneal = (n + 1)τ for different values of τ . Lines are guides to 
the eye.

AQA is essentially the same as slow quantum annealing which, ac-
cording to the adiabatic theorem, should give the ground state of 
the problem Hamiltonian. If the time step is too large (τ = 0.8), 
we lose contact with the idea of quantum annealing. We still get 
reasonable success probabilities for t < 20, but if we then an-
neal longer, the success probability drops. We have started a new 
project that specifically studies AQA to address this aspect.

The fact that QAOA is able to optimize the cases τ ∈ {0.1,0.2,

0.4} ns can be interpreted as follows: For τ up to 0.4 ns, AQA still 
resembles QA with a very short annealing time (e.g. by render-
ing the system in a low energy state as in [98]), so optimization 
can increase the success probability (as indicated by the arrows in 
Fig. 8(a)). The case τ = 0.8 ns, however, does not seem to yield 
suitable initial values for the parameters βk and γk as is clear from 
the fact that the optimization during QAOA does not yield a sig-
nificant improvement. However, for AQA with a small number of 
steps n (e.g. n = 5 where Psuccess ≈ 10−3 in Fig. 8(a)), it may still 
be a reasonable choice (see also the surprisingly good scaling in 
Fig. 11 below).

On the one hand, we find that with AQA for a large number of 
steps (n ≈ 50–100), we obtain similar success probabilities as with 
QAOA for smaller p ≈ 6–13, but the QAOA optimization requires 
many calls to JUQCS–G. Moreover, we also observed that the min-
imizer can get stuck in a local optimum which then does not lead 
to an improved performance over AQA even for the same num-
ber of steps and many more circuit evaluations. However, also for 
AQA, we have to search for a good value of τ which optimizes 
10
Fig. 9. Visualization of the variational QAOA parameters (a) βk and (b) γk for p = 13
using exact cover instance 30(0). Solid lines show the initial values taken from the 
second-order QA initialization (see Fig. 4 and Eqs. (15)–(17)), corresponding to the 
start of the lines with arrows in Fig. 8(a). Dashed lines show the final parameters 
after 200 QAOA optimization cycles (i.e., 200 JUQCS–G calls), corresponding to the 
end of the lines with arrows in Fig. 8(a). For τ = 0.8 ns (red squares), not the full 
set of final QAOA parameters is shown to keep the scale reasonable for the other 
cases and because Fig. 8(a) shows that the optimization brings no improvement 
in the performance. Note that the fact that the optimized βk and γk still roughly 
follow the initialization from QA suggests that it was an effective modification of 
the annealing schedule that could so dramatically improve the success probability 
in Fig. 8(a).

the success probability for a given number of steps n. The same τ
that leads to an optimal success probability for a certain value of 
n may not be optimal for other values of n. Still, for AQA, we ba-
sically have to optimize a single parameter only (if n is fixed) and 
not 2p parameters as is the case for QAOA.

On the other hand, for NISQ devices, AQA with a large number 
of steps n (and equivalently QAOA with a large number of steps 
p) will probably suffer from accumulated errors during the rela-
tively long quantum circuit. Thus, NISQ devices may cope better 
with QAOA with small p than AQA with large n. Perhaps, build-
ing on the result that the optimized βk and γk in Fig. 9 were not 
far from the annealing initialization, the best solution might be 
to indeed use AQA with small n but with better effective (maybe 
problem-dependent) annealing schedules. Comparing the perfor-
mance of AQA and QAOA on NISQ devices in practice would be 
an interesting study for the future.

3.3.4. Scaling as a function of the problem size N
In Figs. 10 and 11, we show the scaling of the success prob-

abilities obtained for different problem instances with increasing 
number of qubits using AQA and QAOA. In Fig. 10, the scalings 
of AQA and QAOA with the system size look quite similar up to 
N = 34. For larger N , the drops in the success probability for the 
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Fig. 10. Scaling of the success probability as a function of the system size N . The 
different markers correspond to AQA with n = 50 and τ = 0.4 ns (green asterisks), 
QAOA for p = 7 (red squares), and QAOA for p = 13 (blue circles), taken from Ta-
bles 2 and 3. The dash-dotted line indicates the scaling of a uniform probability 
distribution. The green asterisk at N = 30 is the same point shown in Fig. 8 at 
n = 50, τ = 0.4 ns and tanneal = 20.4 ns. Lines are guides to the eye.

Fig. 11. Scaling of the success probability as a function of the system size N , using 
AQA with n = 5 (filled triangles) and pre-optimized QAOA with p = 6 (open tri-
angles). Here, pre-optimized means that for all instances, the same values for βk

and γk (obtained from the optimization of the 30-qubit problem instance 30(0), see 
Fig. 8) are used. We ran two problem instances for each system size, so all triangles 
appear in pairs. Solid (dashed) lines show fits to the AQA (QAOA) results. Different 
colors correspond to different values for τ as indicated in Fig. 8. The dash-dotted 
line indicates the probability to find the solution when picking from a uniform dis-
tribution at random. The data for all runs was obtained with JUQCS–G, using a 
quantum circuit that performs the time evolution simulated by QSDS (see Eq. (22)), 
thereby leveraging the computational power of the GPUs.

QAOA data are where the minimizer probably got stuck in a local 
optimum (red entries in Table 2). We note that for QAOA, we ran 
the optimization procedure for each system size. For AQA, we did 
not perform any optimization but we used a relatively large step 
size τ .

In Fig. 11, we always use the same βk and γk obtained from 
the QAOA optimization for problem instance 30(0). In other words, 
we take the variational parameters obtained by optimizing the 30-
qubit instance 30(0), and we use the same parameters for different
problem instances of different size. In this way, we test how well 
the effective “modified annealing schedule” (cf. Fig. 9) generalizes 
to other problems of larger size.
11
Fig. 11 shows that the QAOA parameters generalize systemat-
ically, but as expected, the success probability still drops expo-
nentially with increasing qubit number. Furthermore, the fits to 
the data (lines) show that the exponential scaling is of the form 
2−αN for α � 0.6. In contrast, we observe that for AQA, although 
the drop in success probability is also exponential, the exponent 
α behaves more favorably. Remarkably, this favorable scaling is 
especially pronounced for the large value of τ = 0.8 ns (where 
α = 0.34), which is very far in the AQA regime.

4. Summary

The first part of this paper was devoted to the study of the 
weak and strong scaling behavior of a GPU-accelerated version 
(JUQCS–G) of the Jülich Universal Quantum Computer Simulator 
(JUQCS) [1] by performing benchmarks on JUWELS Booster, a su-
percomputer with 3744 NVIDIA A100 Tensor Core GPUs. Our data 
shows that JUQCS–G exhibits nearly perfect weak and strong scal-
ing for systems up to 42 qubits. Comparing elapsed times for 
JUQCS–G and for JUQCS–E, a non-GPU version of JUQCS, shows 
that the former is a factor of 10–18 faster than the latter. As the 
number of qubits reaches the maximum that the available memory 
allows, the larger fraction of the elapsed time goes into MPI com-
munication, for both the GPU and non-GPU version. In any case, 
using the GPU version significantly reduces the computing time 
required to simulate quantum computers and quantum systems.

In the second part of the paper, we have used JUQCS–G to 
solve exact cover problems with up to 40 variables (qubits). Hereby 
the focus was on the assessment of the potential of the quan-
tum approximate optimization algorithm (QAOA) as a vehicle to 
solve optimization problems involving 30–40 qubits. Due to the 
minimization of parameters reflecting the variational nature of the 
QAOA, it is necessary to execute the quantum circuit many times. 
In most cases, at least for the 30–40 qubit instances that we have 
studied, the number of repetitions (with different sets of parame-
ters) has a negative impact on the efficiency of the QAOA.

As an alternative, we also studied the performance of what we 
called approximate quantum annealing (AQA). AQA is a discretized 
version of quantum annealing which is approximate in the sense 
that we use only a few, relatively large time steps, possibly be-
yond the regime where quantum annealing is theoretically justified 
through the adiabatic theorem. Nevertheless, we found that, with-
out any optimization, we already obtain success probabilities 
 1%
for problem instances up to N = 40 qubits. These promising results 
suggest that for future gate-based quantum computers which can 
cope with a larger circuit depth, direct AQA may provide a better 
alternative to the QAOA as it avoids the costly optimization proce-
dure. As a matter of fact, from a computational viewpoint, AQA is 
much more efficient than the QAOA.

It is self-evident that all the simulation results that we have 
presented in this paper have been obtained by simulating the ideal 
mathematical model of a gate-based quantum computer. In this 
sense, the 30–40 qubit results presented in this paper are the “best 
case”, very unlikely to be achieved by using a real quantum proces-
sor. Of course, it is possible to incorporate noise and errors into our 
simulations (left for future work), but accounting for the intrinsic 
quantum gate errors of 30–40 qubit systems requires simulation 
times that are currently prohibitive [99]. Clearly, to get a view on 
the errors involved, it would be very interesting to run say a 30-
qubit exact cover quantum circuit on a NISQ device and compare 
the experimental data with the simulation results. Furthermore, as 
our conclusions are drawn from results obtained for 30–40 vari-
able exact cover problems, it might be of interest to investigate 
how generic these conclusions are by studying different types of 
optimization problems.
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Appendix A. Second-order initialization of the QAOA parameters

The QAOA state with 2p variational parameters βk and γk reads 
(see Eq. (7))

|β,γ 〉 = e−iβp H D e−iγp HC · · · e−iβ1 H D e−iγ1 HC |+〉⊗N . (A.1)

Inserting the values for the QAOA parameters given in Eqs. (15)–
(17), and replacing |+〉⊗N by eiτ A(s1)H D/2 |+〉⊗N (which only differs 
from |+〉⊗N by a global phase and is thus physically equivalent) 
yields

|β,γ 〉 = eiτ A(sp)H D/2e−iτ B(sp)HC

· · · eiτ (A(s2)+A(s1))H D/2e−iτ B(s1)HC eiτ A(s1)H D/2 |+〉⊗N .

(A.2)

Here we see that |β,γ 〉 can be expressed as

|β,γ 〉 = U (sp) · · · U (s1) |+〉⊗N , (A.3)

where U (sk) for k = 1, . . . , p is the second-order Suzuki-Trotter de-
composition [51,52],

U (sk) = eiτ A(sk)H D/2e−iτ B(sk)HC eiτ A(sk)H D/2, (A.4)

of the discretized time-evolution operator generated by the QA 
Hamiltonian H(s) = A(s)(−H D) + B(s)HC (see Eq. (5)). We note 
that besides the choice sk = (k − 1)/(p − 1) taken in this paper, 
also the mid-point decomposition used in [14] is a good choice for 
the discretization (cf. [91]).
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