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Abstract. An N̄N potential is reviewed which has been derived within chiral
effective field theory by the Jülich-Bonn group. By construction it reproduces
N̄N phase shifts and inelasticities, provided by an elaborate phase-shift analysis
of available p̄p scattering data. This interaction is then employed in a study
of neutron-antineutron oscillations in the deuteron. In particular, the deuteron
lifetime is considered, and results for it are presented in terms of the free-space
n − n̄ oscillation time, based on that N̄N potential in combination with an NN
interaction likewise derived within chiral effective field theory.

1 Introduction

In Ref. [1] a new generation of nucleon-nucleon (NN) potentials was derived in the frame-
work of chiral effective field theory (EFT). In that publication a novel local regularization
scheme was introduced and applied to the pion-exchange contributions to the NN force. Fur-
thermore, an alternative scheme for estimating the theoretical uncertainty was proposed that
no longer depends on a variation of the cutoff [2, 3]. In a recent study the Jülich-Bonn group
took advantage of this development and adapted the formalism and the concepts proposed
by Epelbaum et al. in order to establish a high-precision antinucleon-nucleon (N̄N) potential
within chiral EFT [4]. Specifically, in that work an N̄N potential up to next-to-next-to-next-
to-leading order (N3LO) in the perturbative expansion was presented, which extends a previ-
ous work by the Jülich-Bonn group that had considered the N̄N force only up to N2LO [5].
In both cases the strength parameters of the contact terms that arise in the EFT framework
[3, 6] (i.e. the low-energy constants or simply LECs) have been fixed by a fit to the phase
shifts and inelasticities provided by a proper phase-shift analysis of p̄p scattering data [7].

The N̄N potentials from chiral EFT have been already successfully used in studies of
the electromagnetic form factors of the proton in the time-like region [8] and of the unusually
large near-threshold enhancement in the p̄p spectrum detected in the reaction J/ψ→ γ p̄p [9].
A further and certainly more exotic application of this N̄N interaction has been presented by
us in Ref. [10], where neutron-antineutron oscillations in the deuteron have been studied.
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Neutron-antineutron (n − n̄) oscillations involve a change of the baryon number (B) by two
units (|∆B| = 2). An experimental observation would allow a glimpse on physics beyond
the standard model, see e.g. [11–13]. Since in such oscillations B is violated the process
satisfies one of the Sakharov conditions [14] that have been formulated in order to explain
the observation that there is more matter than anti-matter in the universe [15].

The key quanitity in this subject is the free n− n̄ oscillation time, τn−n̄. The presently best
experimental limit on it is τn−n̄ > 0.86 × 108 s ≈ 2.7 yr (with 90 % C.L.) [16]. Additional
information can be deduced from studies of n − n̄ oscillations in a nuclear environment.
Corresponding experiments have been performed, e.g., for 56Fe [17], 16O [18], and for the
deuteron (2H) [19], while others are planned [20, 21] In such a case the oscillation process
is suppressed as compared to the free situation. The pertinent lifetime τnuc is commonly
expressed in terms of the one in free space as [12]

τnuc = R τ2
n−n̄ , (1)

where R is an intranuclear suppression factor, also called reduced lifetime, that depends on
the specific nucleus. It can be calculated from nuclear theory and then can be used to relate
the measured lifetimes of those nuclei with the free n − n̄ oscillation time [12], see, e.g.,
Refs. [22–26].

For a long time the suppression factors published in 1983 [23] have been used as standard
by experimentalists in the interpretation of their measurements [17, 19]. For example, in case
of the deuteron the corresponding value is R ∼ (2.40− 2.56)× 1022 s−1, a prediction based on
the phenomenological antinucleon-nucleon (N̄N) potentials by Dover and Richard [27, 28].
Recently, however, those values have been challenged in a work by Oosterhof et al. [29]. In
that study an effective field theory for the |∆B| = 2 interaction is constructed and the quantity
R is evaluated within the power counting scheme proposed by Kaplan, Savage, and Wise
(KSW) [30, 31] for the nucleon-nucleon (NN) and N̄N interactions. The value of R for the
deuteron obtained in that approach is (1.1 ± 0.3) × 1022 s−1, about a factor 2 smaller than the
one by Dover et al. [23].

In the light of this controversal situation a new calculation of the suppression factor for the
deuteron has been performed by us [10]. It was prompted by the aim to utilize the discussed
modern chiral interactions for the involved NN [1] and N̄N [4] systems. Specifically, in
case of the N̄N interaction most of the available precise p̄p scattering data (mostly from
the LEAR facility at CERN [32]) have appeared only after the publication of the potentials
used in Ref. [23]. Therefore, an update is long overdue. Of course, the main motivation
was the aforementiond discrepancy reported in Ref. [29] and the prospect to find a plausible
explanation for that difference.

The paper is structured in the following way: In Sect. 2 the employed N̄N potential is
described and some results for n̄p, relevant for the calculation of n − n̄ oscillations in the
deuteron, are presented. In Sect. 3 a basic description of the formalism for evaluating the
n − n̄ oscillations in the deuteron is provided. Results for the oscillations, specifically for the
suppression factor R, are presented in Sect. 4. The paper closes with a brief summary.

2 The N̄N interaction in chiral EFT

The derivation of the chiral N̄N potential using the Weinberg power counting is described ex-
tensively in Ref. [4], and we refer the reader to this work for the details. As already indicated
above, the chiral potential contains pion exchanges and a series of contact interactions with
an increasing number of derivatives. Up to N3LO there are contributions from one-, two-
and three-pion exchanges. Those are identical to the ones that appear in the NN potential
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[1]. However, there is a sign change in case of an odd number of exchanged pions due to its
negative G parity, i.e. VN̄N = −Vπ + V2π − V3π, with Vπ, etc., the corresponding contribu-
tions to the NN force. On the other hand, the contact interaction, VN̄N

cont, cannot be taken over
simply from the NN case. Those contact terms represent effectively the short-range part of
the interaction and, therefore, the G parity of the indivudal contributions remains unresolved.
Thus, the strength parameters associated with the arising contact terms, the LECs, need to
be determined in a fit to N̄N data. We fix them by fitting to the phase shifts and inelasticity
parameters of the PWA of Zhou and Timmermans [7]. How this is done is described in detail
in Ref. [4]. Note that there are more independent LECs in the N̄N case than in NN because in
the former system there is no restriction from the Pauli principle. In addition, in our approach
N̄N annihilation (into multi-meson channels) is likewise parameterized by contact terms, see
Refs. [4, 5] for explicit expressions.

Once the potential is established, the reaction amplitude is obtained from the solution of
a relativistic Lippmann-Schwinger (LS) equation. It reads in partial-wave projected form

TL′′L′ (p′′, p′; Ek) = VL′′L′ (p′′, p′)

+
∑

L

∫ ∞
0

dpp2

(2π)3 VL′′L(p′′, p)
1

2Ek − 2Ep + i0+
TLL′ (p, p′; Ek) . (2)

Here p′′ and p′ are the (moduli of the) center-of-mass N̄N momenta in the final and initial

states, respectively, and Ek =
√

M2
p + k2, where k is the on-shell momentum. We adopt a

relativistic scattering equation so that our amplitudes fulfill the relativistic unitarity condition
at any order, as done also in the NN sector [2, 6]. On the other hand, relativistic corrections
to the potential are calculated order by order. They appear first at N3LO in the Weinberg
scheme, see Appendix A in Ref. [4]. L, L′, etc., specifies the orbital angular momentum,
considering that the N̄N system can be in uncoupled (spin-singlet or triplet) states where
L′′ = L′ = L = J or in coupled partial waves with L′′, L′, L = J − 1, J + 1.

Since the integral in the LS equation (2) is divergent for the chiral potentials [2, 6] a reg-
ularization needs to be introduced. For that the regularization scheme of Ref. [1] is utilized,
where a local regulator is used for the pion-exchange contributions and a nonlocal regulator
for the contact terms:

Vnπ(q)→ Vnπ(r) × fR(r)→ Vreg
nπ (q); (�q = �p ′ − �p)

Vcont = V(p′, p)→ V(p′, p) × fΛ(p′, p) = Vreg
cont . (3)

The explict form of the regulation functions is fR(r) =
[
1 − exp(−r2/R2)

]6
and fΛ(p, p′) =

exp(−(p′2 + p2)/Λ2). The cutoff radius R is varied in the range R = 0.7-1.2 fm [1] where
Λ = 2/R is used for relating the momentum-space cutoff parameter with the cutoff radius.

A complete overview of our results for N̄N scattering up to N3LO in chiral EFT can be
found in Ref. [4] while possible N̄N bound states are discussed in Ref. [33]. Here we focus
on quantities that are relevant for the study of n − n̄ oscillations in the deuteron. Specifically,
we look at the 3S 1-3D1 phase shifts in the n̄p (isospin I = 1) channel (Fig. 1) and the n̄p
cross section, see Fig. 2. Note that data for the latter reaction were not included in the PWA
[7] because they are less precise than the ones for p̄p. The bands in Figs. 1 and 2 represent
the estimated uncertainty of our results. Here we follow the suggestion of Ref. [1] and use as
measure the expected size of the higher-order corrections together with the actual size of the
higher-order corrections, see Ref. [4] for details.

In Fig. 3 we present the n̄p annihilation cross section multiplied by the velocity β of the
incoming n̄. This allows a more detailed view on the situation very close to the threshold.
We consider only the N3LO interaction with cutoff radius R = 0.9 fm because the theoretical
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Figure 6. Real and imaginary parts of N̄N phase shifts for the potential with cutoff R = 0.9 fm.

Notations are described in the text. The filled circles represent the solution of the p̄p PWA [32].
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Johann Haidenbauer Neutron-antineutron oscillationsFigure 1. Real and imaginary parts of the phase shifts in the 3S 1-3D1 partial wave with isospin I = 1.
Results at N3LO (black solid line), N2LO (blue dashed line), and NLO (red dotted line) are shown. The
estimated uncertainty is indicated by bands: N3LO (magenta), N2LO (cyan), and NLO (yellow). The
filled circles represent the solution of the p̄p PWA [7].

Figure 2. Total (σtot) and integrated annihilation (σann) cross sections for n̄p scattering. Same descrip-
tion of curves and bands as in Fig. 1. Data are from Refs. [34–36].
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Figure 3. Annihilation cross section for n̄p scattering multiplied with the velocity β of the incoming
antineutron. The curves show the results for the N3LO interaction with cutoff radius R = 0.9 fm [4].
The dashed line is the contribution from the 3S 1-3D1 partial wave while the solid line is the full result.
Data are from Refs. [34, 36].

uncertainty at low momenta is very small. One can see that most of the contributions come
indeed from the 3S 1-3D1 partial wave, that is relevant for the evaluation of n − n̄ oscillations.
The figure reveals also that the data from the OBELIX Collaboration [36] do not follow the
expected near-threshold behavior. The cross sections for exothermic reactions should behave
like 1/β so that βσann is then approximately constant for low momenta. This expectation is
well satisfied by the BNL data [34], but also by the theory predictions. A discussion of the
anomalous behavior suggested by the OBELIX data can be found in Ref. [35].

In the study of n − n̄ oscillations below we employ also an earlier (N2LO) N̄N poten-
tial published by our group. A description of that interaction can be found in Ref. [5]. We
consider the two N̄N interactions because they are based on rather different regularization
schemes. In the earlier potential [5] a non-local exponential exponential regulator was em-
ployed for the whole potential while, as outlined above, in the N3LO interaction [4] a local
regulator was adopted for the evaluation of the one- and two-pion contributions. Compar-
ing the pertinent results allows us to shed light on the question in how far the choice of the
regulator influences the predictions.

For the needed deuteron wave function we take those from the NN potentials derived in
the same framework and at the same order. In particular, for the calculation with the new N̄N
interaction [4] we take the wave functions from Ref. [1], whereas for that with the (N2LO)
N̄N potential [5] the wave functions from Ref. [2] are utilized. For exploring the sensitivity
of the results to the deuteron wave function we employ also those from two meson-exchange
potentials [37, 38].

3 Formalism for n − n̄ oscillations

For evaluating the n − n̄ oscillations in the deuteron we follow the formalism presented in
Refs. [22, 23]. The starting point is the eigenvalue (Schrödinger) equation [22]

(
H0 + Vnp Vn−n̄

Vn−n̄ H0 + Vn̄p

) (
|ψnp〉
|ψn̄p〉

)
= (E − iΓ/2)

(
|ψnp〉
|ψn̄p〉

)
. (4)
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Here, Vnp and Vn̄p are the potentials in the np and n̄p systems and |ψnp〉 and |ψn̄p〉 are the
corresponding wave functions. The systems are coupled via Vn−n̄ which is given by the n − n̄
transition matrix element δmn−n̄ where the latter is proportional to the inverse of the n − n̄
oscillation time, i.e. Vn−n̄ = δmn−n̄ = �/τn−n̄ [12].

To leading order the n̄p component |ψn̄p〉 obeys the equation

(H0 + Vn̄p − Ed)|ψn̄p〉 = −Vn−n̄|ψd〉 , (5)

where Ed is the unperturbed energy of the deuteron and |ψd〉 is the corresponding deuteron
wave function. The decay width of the deuteron, Γd, is then [22]

Γd = −2 Vn−n̄ Im〈ψd |ψn̄p〉 . (6)

We solve Eq. (5) in momentum space. Performing a partial wave decomposition and taking
into account the coupling of the 3S 1 and 3D1 channels, the above integral equation reads

(2Ep − Ed)ψL
n̄p(p) +

∑
L′

∫
dq q2

(2π)3 VL,L′
n̄p (p, q)ψL′

n̄p(q) = −Vn−n̄ ψ
L
d (p) , (7)

with L, L′ = 0, 2. Note that Ed is the total energy corresponding to the deuteron, i.e. Ed −
2mN = 2

√
m2

N − κ2 − 2mN = −Bd where Bd is the standard binding energy of 2.225 MeV

and κ =
√

mN Bd � 45.7 MeV is the binding momentum. The deuteron wave function is
normalized by ∫

dpp2
[
(ψ0

d(p))2 + (ψ2
d(p))2

]
= 1 , (8)

and the width is provided by

Γd = −2 Vn−n̄ Im
∑

L

∫
dpp2 ψL

d (p)ψL
n̄p(p) . (9)

The deuteron lifetime τd is given by τd = �/Γd. The interesting quantity is the so-called
reduced lifetime R [22, 23, 26] which relates the free n − n̄ oscillation lifetime with that of
the deuteron,

τd = R τ2
n−n̄ i.e. R =

�

Γdτ
2
n−n̄

. (10)

4 Results and discussion

Our results for the reduced lifetime R for the deuteron are summarized in Table 1. They are
based on our N3LO interaction with cutoff R0 = 0.9 fm [4] and the N2LO interaction with
cutoff {Λ, Λ̃} = {450, 500}MeV [5]. For technical details see the corresponding publications.
Besides the predictions for R based on the chiral N̄N interactions we list also the values given
in Ref. [23] where the N̄N potentials DR1 and DR2 by Dover-Richard [27, 28] have been
utilized. Furthermore we include results from the calculation of Oosterhof et al. performed
directly within EFT on the basis of the KSW approach. In this case R can be represented in a
compact analytical form which reads up to NLO [29]

R = − κ
mN

1
Im an̄p

1
1 + 0.4 + 2κRe an̄p − 0.13 ± 0.4

. (11)

Obviously, the only parameter here is the n̄p 3S 1 scattering length. All other quantities that
enter are well established NN observables, cf. Ref. [29] for details. Note that in that paper,
the scattering length Re an̄p was taken from Ref. [4].
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enter are well established NN observables, cf. Ref. [29] for details. Note that in that paper,
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Table 1. Reduced lifetime R calculated for the χEFT N̄N potentials from Refs. [4, 5], together with
information on the pertinent n̄p 3S 1 scattering length. Results for the Dover-Richard potentials DR1

and DR2 are taken from Ref. [23]. The corresponding scattering lengths are from Ref. [39].
Predictions based on Eq. (11), i.e. on the KSW approach applied in Ref. [29], are indicated too.

χEFT N2LO [5] χEFT N3LO [4] DR1 [23] DR2 [23]

R [s−1] 2.49 × 1022 2.56 × 1022 2.56 × 1022 2.40 × 1022

(Eq. (11)) (1.1 ± 0.3) × 1022 (1.2 ± 0.3) × 1022 (1.4 ± 0.4) × 1022 (1.3 ± 0.3) × 1022

a3S 1 [fm] 0.44 − i 0.91 0.44 − i 0.96 0.87 − i 0.66 0.89 − i 0.71

Table 1 reveals that the values for R predicted by the chiral N̄N interactions are fairly
similar to those obtained for the DR potentials in the past. By contrast, the results based on
the framework employed by Oosterhof et al. [29] are rather different. Since the scattering
length from the N3LO chiral N̄N interaction [4] is utilized in that work, the large discrepancy
observed in Ref. [29] is certainly not due to differences in Im an̄p but must be primarily a
consequence of the different approaches.

For investigating the sensitivity of our results to the used ingredients we performed vari-
ous exploratory calculations. Specifically, we employed the NLO and N2LO variants of the
considered N̄N (and NN) interactions. The corresponding predictions for R were found to
lie within a range of (2.48 − 2.65) × 1022 s−1. If one takes this variation as measure for the
uncertainty due to the nuclear structure, i.e. the NN and N̄N interactions (wave functions), a
value of roughly R = (2.6 ± 0.1) × 1022 s−1 can be deduced. Application of the method pro-
posed in Ref. [1] for estimating the uncertainty to the calculation based on the N̄N interaction
from 2017 [4], say, leads to a slightly smaller uncertainty. We have also varied the deuteron
wave functions alone. As an extreme case we even took wave functions from phenomenolog-
ical NN potentials derived in an entirely different framework, namely in the meson-exchange
picture [37, 38]. Also here the obtained values for R remained within the range given above.
Finally, omitting the D-wave component of the deuteron wave function in our calculation
causes a 5 % variation. It leads to an increase of R and, thus, does not bring the result closer
to the values presented by Oosterhof et al. Overall, we confirm the observation by Dover et
al. that the predictions for R are fairly insensitive to the details of the employed N̄N potentials
[23], provided that these potentials describe the p̄p data at low energies.

At this stage we do not have a sensible explanation for the difference of our results (and
those of Ref. [23]) to the ones of Oosterhof et al. [29]. However, we believe that it is due to
the fact that in the latter work the width Γd is evaluated following the perturbative scheme
developed by Kaplan, Savage, and Wise [31]. In that scheme there is no proper deuteron wave
function. Rather one works with an effectively constructed wave function that is represented
in terms of an irreducible two-point function [29, 31]. This seems to work well for some
electromagnetic form factors of the deuteron, at least at low momentum transfer [31, 40]. On
the other hand, the quadrupole moment of the deuteron is overestimated by 40 % [31], which
hints that the properties of the wave function at large distances (small momenta) are not that
well represented in this scheme. Clearly, this should have an impact on the quantity studied
in the present work as well. Note that a comparable agreement (mismatch) with regard to
the KSW scheme has been also observed in studies of the electric dipole moment (magnetic
quadrupole moment) of the deuteron [41–43]. In any case, one should not forget that there is
convergence problem of the KSW approach for NN partial waves where the tensor force from
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pion exchange is present [44]. It affects specifically the 3S 1-3D1 channel where difficulties
appear already for momenta around 100 MeV/c, see [44] and also the discussions in Refs. [3,
45].

5 Summary

Chiral effective field theory does not only work very well for the interaction between nucleons
[3, 6] it can be also successfully employed to study the antinucleon-nucleon interaction as has
been demonstrated by the Jülich-Bonn group [4, 5]. In this contribution we have discussed our
most refined N̄N potential [4], established within chiral EFT up to N3LO, and we presented
some selective predictions for n̄p scattering. The potential has been fitted to up-to-date N̄N
phase shifts and inelasticities provided by a phase-shift analysis of available p̄p scattering
data [7].

As an application of this interaction neutron-antineutron oscillations in the deuteron have
been considered. In particular, results for the deuteron lifetime have been presented, evaluated
in terms of the free-space n − n̄ oscillation time, utilizing that N̄N potential in combination
with an NN interaction likewise derived within chiral effective field theory. The value ob-
tained for the so-called reduced lifetime R which relates the free-space n − n̄ oscillation time
τn−n̄ with the deuteron lifetime is found to be R = (2.6 ± 0.1) × 1022 s−1, where the quoted
uncertainty is due to the NN and N̄N interactions (wave functions).

Our prediction for R agrees with the value obtained by Dover and collaborators almost
four decades ago [23] but deviates from recent EFT calculations, based on the perturbative
scheme proposed by Kaplan, Savage, and Wise [29], by about a factor of 2. A possible expla-
nation for the difference could be that the KSW scheme does not involve a proper deuteron
wave function. Rather this ingredient is represented effectively in terms of an irreducible two-
point function. It is known from past studies that the KSW approach fails to describe quan-
tities that depend more sensitively on the wave function like, for example, the quadrupole
moment of the deuteron [31].
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