000910812 001__ 910812
000910812 005__ 20250129092409.0
000910812 0247_ $$2doi$$a10.1038/s41586-022-05117-x
000910812 0247_ $$2Handle$$a2128/32319
000910812 0247_ $$2pmid$$a36171383
000910812 0247_ $$2WOS$$aWOS:000862041000025
000910812 037__ $$aFZJ-2022-04162
000910812 082__ $$a500
000910812 1001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars$$b0$$ufzj
000910812 245__ $$aSechs auf einen StreichEbnen siliziumbasierte Quantencomputer den Weg zur Skalierbarkeit?
000910812 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2022
000910812 29510 $$aUniversal control of a six-qubit quantum processor in silicon
000910812 3367_ $$2DataCite$$aOutput Types/Book Review
000910812 3367_ $$0PUB:(DE-HGF)36$$2PUB:(DE-HGF)$$aReview$$breview$$mreview$$s1674463252_17617
000910812 3367_ $$2ORCID$$aBOOK_REVIEW
000910812 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000910812 3367_ $$2DRIVER$$areview
000910812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000910812 3367_ $$2BibTeX$$aARTICLE
000910812 3367_ $$00$$2EndNote$$aJournal Article
000910812 520__ $$aFuture quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably [1]. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise [2,3] but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout [4-11]. Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.
000910812 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910812 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b1$$eCorresponding author$$ufzj
000910812 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-022-05117-x$$n919$$tNature <London>$$v609$$x0028-0836$$y2022
000910812 8564_ $$uhttps://juser.fz-juelich.de/record/910812/files/s41586-022-05117-x.pdf$$yOpenAccess
000910812 909CO $$ooai:juser.fz-juelich.de:910812$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b0$$kFZJ
000910812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b1$$kFZJ
000910812 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910812 9141_ $$y2022
000910812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910812 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2022-11-29$$wger
000910812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2021$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
000910812 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bNATURE : 2021$$d2022-11-29
000910812 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000910812 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000910812 9801_ $$aFullTexts
000910812 980__ $$areview
000910812 980__ $$aVDB
000910812 980__ $$abook
000910812 980__ $$ajournal
000910812 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000910812 980__ $$aI:(DE-Juel1)PGI-11-20170113
000910812 980__ $$aUNRESTRICTED
000910812 981__ $$aI:(DE-Juel1)PGI-4-20110106