000910817 001__ 910817
000910817 005__ 20230123110719.0
000910817 0247_ $$2doi$$a10.1016/j.jmmm.2022.169965
000910817 0247_ $$2ISSN$$a0304-8853
000910817 0247_ $$2ISSN$$a1873-4766
000910817 0247_ $$2Handle$$a2128/33161
000910817 0247_ $$2WOS$$aWOS:000871107000004
000910817 037__ $$aFZJ-2022-04167
000910817 082__ $$a530
000910817 1001_ $$0P:(DE-HGF)0$$aEngelmann, Ulrich M.$$b0$$eCorresponding author
000910817 245__ $$aProbing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation
000910817 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2022
000910817 3367_ $$2DRIVER$$aarticle
000910817 3367_ $$2DataCite$$aOutput Types/Journal article
000910817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671193367_19774
000910817 3367_ $$2BibTeX$$aARTICLE
000910817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910817 3367_ $$00$$2EndNote$$aJournal Article
000910817 520__ $$aBiomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles’ magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning 10 nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.
000910817 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000910817 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910817 7001_ $$0P:(DE-Juel1)173858$$aPourshahidi, Ali Mohammad$$b1$$ufzj
000910817 7001_ $$0P:(DE-HGF)0$$aShalaby, Ahmed$$b2
000910817 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b3$$eCorresponding author$$ufzj
000910817 773__ $$0PERI:(DE-600)1479000-2$$a10.1016/j.jmmm.2022.169965$$gVol. 563, p. 169965 -$$p169965 -$$tJournal of magnetism and magnetic materials$$v563$$x0304-8853$$y2022
000910817 8564_ $$uhttps://juser.fz-juelich.de/record/910817/files/Author%20Manuscript%20Post%20Referee.pdf$$yPublished on 2022-09-22. Available in OpenAccess from 2024-09-22.$$zStatID:(DE-HGF)0510
000910817 909CO $$ooai:juser.fz-juelich.de:910817$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173858$$aForschungszentrum Jülich$$b1$$kFZJ
000910817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b3$$kFZJ
000910817 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000910817 9141_ $$y2022
000910817 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000910817 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910817 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910817 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000910817 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000910817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000910817 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000910817 920__ $$lyes
000910817 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000910817 980__ $$ajournal
000910817 980__ $$aVDB
000910817 980__ $$aUNRESTRICTED
000910817 980__ $$aI:(DE-Juel1)IBI-3-20200312
000910817 9801_ $$aFullTexts