001     910827
005     20240712113102.0
024 7 _ |a 10.1016/j.apenergy.2021.117747
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000703605700003
|2 WOS
037 _ _ |a FZJ-2022-04177
082 _ _ |a 620
100 1 _ |a Sieg, Johannes
|0 0000-0002-8859-8910
|b 0
|e Corresponding author
245 _ _ |a Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712840588_22452
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fast charging of electric vehicles is becoming more and more important for achieving customer acceptance of electromobility. During fast charging, the maximum charging rate of the lithium-ion cells used in the traction batteries of electric vehicles has to be controlled properly to avoid the deposition of metallic lithium on the surface of the negative electrode, known as lithium plating. However, cycle life tests have shown that after a few hundred cycles at a moderate aging rate, the fast-charging capability of lithium-ion cells decreases and a sudden, rapid loss of capacity is observable. Therefore, to achieve a long service life and, concurrently, short charging times, it is crucial to analyze the non-plating critical charging rate depending on the mode of battery degradation.In this paper, we separately investigate the influence of the main aging factors, such as electrode aging and electrolyte consumption, on the fast-charging capability of large-format automotive lithium-ion pouch cells. The pouch cells are cycled to different states of health and a post-mortem local degradation analysis is performed. Using three-electrode test cells, the non-plating critical charging curves are determined for the aged electrode material and for test cells assembled with different amounts of electrolyte. Our findings reveal that for the investigated lithium-ion pouch cells the fast-charging capability is reduced over cycling not by the aging of the electrodes but by the consumption of electrolyte.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmid, Alexander U.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rau, Laura
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gesterkamp, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Storch, Mathias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Spier, Bernd
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Birke, Kai Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 7
773 _ _ |a 10.1016/j.apenergy.2021.117747
|g Vol. 305, p. 117747 -
|0 PERI:(DE-600)2000772-3
|p 117747 -
|t Applied energy
|v 305
|y 2022
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/910827/files/Fast-charging%20capability%20of%20lithium-ion%20cells_%20Influence%20of%20electrode%20aging%20and%20electrolyte%20consumption.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910827/files/Fast-charging%20capability%20of%20lithium-ion%20cells_%20Influence%20of%20electrode%20aging%20and%20electrolyte%20consumption.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910827/files/Fast-charging%20capability%20of%20lithium-ion%20cells_%20Influence%20of%20electrode%20aging%20and%20electrolyte%20consumption.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910827/files/Fast-charging%20capability%20of%20lithium-ion%20cells_%20Influence%20of%20electrode%20aging%20and%20electrolyte%20consumption.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910827/files/Fast-charging%20capability%20of%20lithium-ion%20cells_%20Influence%20of%20electrode%20aging%20and%20electrolyte%20consumption.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:910827
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2019
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21