000910829 001__ 910829
000910829 005__ 20240712113117.0
000910829 0247_ $$2doi$$a10.1016/j.apenergy.2021.118114
000910829 0247_ $$2ISSN$$a0306-2619
000910829 0247_ $$2ISSN$$a1872-9118
000910829 0247_ $$2WOS$$aWOS:000720481200003
000910829 037__ $$aFZJ-2022-04179
000910829 082__ $$a620
000910829 1001_ $$00000-0002-2916-3968$$aLi, Weihan$$b0$$eCorresponding author
000910829 245__ $$aUnlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression
000910829 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000910829 3367_ $$2DRIVER$$aarticle
000910829 3367_ $$2DataCite$$aOutput Types/Journal article
000910829 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712832873_17577
000910829 3367_ $$2BibTeX$$aARTICLE
000910829 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910829 3367_ $$00$$2EndNote$$aJournal Article
000910829 520__ $$aThe knowledge of the dynamic available charging and discharging power of the battery is a piece of essential information for the safety and longevity of the battery energy storage systems. An accurate real-time prediction of these quantities is very challenging due to the high nonlinearities of battery dynamics. In this paper, an electrochemical model-based online state-of-power prediction algorithm under different time horizons is developed for a safer and more reliable operation of lithium-ion batteries. The safety constraints, which define the safety operation area for the power prediction, are designed based on not only the terminal voltage but also battery internal electrochemical states, i.e., the electrode surface concentration, the electrolyte concentration, and the side reaction overpotential. The algorithm is validated by simulations and experiments under a dynamic load profile, and the dominating constraints in charging and discharging as well as the influence of predictive time horizons on the available battery power are analyzed, providing important information for further researches. Furthermore, the computational speed of the proposed iterative algorithm is improved with the integration of Gaussian process regression by up to 50%. A comparative study with a state-of-the-art equivalent circuit model-based approach highlights the significant benefits of the proposed electrochemical model-based algorithm in operation safety enhancement and battery performance improvement.
000910829 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000910829 536__ $$0G:(EU-Grant)713771$$aEVERLASTING - Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery management (713771)$$c713771$$fH2020-GV-2015$$x1
000910829 536__ $$0G:(BMBF)03XP0334$$aBMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)$$c03XP0334$$x2
000910829 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910829 7001_ $$00000-0003-3517-4548$$aFan, Yue$$b1
000910829 7001_ $$aRingbeck, Florian$$b2
000910829 7001_ $$00000-0002-5731-5666$$aJöst, Dominik$$b3
000910829 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b4
000910829 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2021.118114$$gVol. 306, p. 118114 -$$p118114 -$$tApplied energy$$v306$$x0306-2619$$y2022
000910829 8564_ $$uhttps://juser.fz-juelich.de/record/910829/files/Unlocking%20electrochemical%20model-based%20online%20power%20prediction%20for%20lithium-ion%20batteries%20via%20Gaussian%20process%20regression.pdf$$yRestricted
000910829 8564_ $$uhttps://juser.fz-juelich.de/record/910829/files/Unlocking%20electrochemical%20model-based%20online%20power%20prediction%20for%20lithium-ion%20batteries%20via%20Gaussian%20process%20regression.gif?subformat=icon$$xicon$$yRestricted
000910829 8564_ $$uhttps://juser.fz-juelich.de/record/910829/files/Unlocking%20electrochemical%20model-based%20online%20power%20prediction%20for%20lithium-ion%20batteries%20via%20Gaussian%20process%20regression.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000910829 8564_ $$uhttps://juser.fz-juelich.de/record/910829/files/Unlocking%20electrochemical%20model-based%20online%20power%20prediction%20for%20lithium-ion%20batteries%20via%20Gaussian%20process%20regression.jpg?subformat=icon-180$$xicon-180$$yRestricted
000910829 8564_ $$uhttps://juser.fz-juelich.de/record/910829/files/Unlocking%20electrochemical%20model-based%20online%20power%20prediction%20for%20lithium-ion%20batteries%20via%20Gaussian%20process%20regression.jpg?subformat=icon-640$$xicon-640$$yRestricted
000910829 909CO $$ooai:juser.fz-juelich.de:910829$$pec_fundedresources$$pVDB$$popenaire
000910829 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b4$$kFZJ
000910829 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000910829 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2019$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000910829 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2019$$d2021-01-27
000910829 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000910829 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000910829 980__ $$ajournal
000910829 980__ $$aVDB
000910829 980__ $$aI:(DE-Juel1)IEK-12-20141217
000910829 980__ $$aI:(DE-82)080011_20140620
000910829 980__ $$aUNRESTRICTED
000910829 981__ $$aI:(DE-Juel1)IMD-4-20141217