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Abstract. The composition of the liquid electrolyte is a key factor in lifetime
performance of lithium-ion batteries. The selection and quantification of additives to
the electrolyte is an active field of research. This study focuses on finding the optimal
additive combination of fluoroethylene carbonate (FEC) and vinylene carbonate (VC)
for NMC622-Graphite cells. The central goal of this work is to accelerate the
experimental search in a large search area by using a Bayesian-optimization algorithm
to guide the search. Different measurements are used as target variable such as
open-circuit voltage gradient and coulombic efficiency. Consequentially, the capability
of these measurements for accelerated lifetime prediction compared to conventional
ageing tests by cycling is investigated. The search gathered and confirmed additive
combinations with excellent performance after four iterations with a total of 15 additive
combinations analyzed. The results of this study give insights into the interaction of
VC and FEC with regard to ageing.



Introduction

The design of Lithium-Ion Battery (LIB) is constantly improving with regards to energy
density and longevity. One lever for the improvement of LIB with liquid electrolytes
is the use of additives in the electrolyte. Additives have been a key focus of the
cell improvements in past years.'” Additives influence the initial solid electrolyte
interphase (SEI) formation.®! For high surface graphite anode materials, reducing the
lithium inventory loss during formation increases the energy density.[”) Over the lifetime,
additives stabilize the SEI under operating conditions, prevent further reaction of the
electrolyte with the anode material,® and can suppress transition metal cross-talk.[”!
Continuous formation and reformation of SEI is a key ageing process of LIB, driving
loss of lithium inventory and increase of the internal resistance.'” Additives have also
extended the duration of cycle life before complete loss of capacity due to rollover.!?
The additives vinylene carbonate (VC) and fluoroethylene carbonate (FEC) are among
the most commonly used ones. Both are reported to contribute to the formation of CO,
(carbon dioxide) which reacts to LioCOj (lithium carbonate), a key component of the
SEL®1 VC is an established additive in the industry known to be extending cycle life
of graphite based anodes.!'? Burns et al. studied the impact of different amounts of VC,
showing that increasing the VC concentration increased cycle life. This was explained
by the consumption of VC rather than other electrolyte components such as EC during
formation, leaving EC for consumption during cycle life.l'3 It was reported that past
a threshold of 4 weight-% (wt%) of VC concentration, the charge transfer resistance
increased, reducing the cell performance at higher C-rates.? VC is also reported
to increase irreversible capacity loss during formation!'¥ and to decrease coulombic
efficiency (CE)!14 leading to the conclusion that the VC concentration should not be
too high. This leaves the question: What is the optimal quantity of VC?

Using FEC as an additive has proven to extend cycle life for silicon composed
anodes. Intan et al.'® showed that adding FEC to the electrolyte leads to a thinner
and more flexible SEI. FEC also showed positive effects on cycle life of cells with
pure graphite anodes, especially at higher temperatures.['%17 Besides the formation of
lithium carbonates, FEC also leads to the formation of LiF (lithium fluoride),!*® which is
highly desirable for creating a stable SEL!"%2% Burns et al. showed that a combination of
VC and FEC can outperform cells which only used one of the two additives with regard
to cycle life.ll The idea that both additives interact during formation is supported by
the findings of Michan et al.,*!) showing that both additives lead to formation of the
same SEI components but in different concentrations. Zhang et al.ll points out that
there is a possible reaction path from FEC to VC, which makes the interaction of the
two additives even more complex.

Considering the results of previous works, we assumed that there is an optimal
combination of VC and FEC. Maximum concentrations of additives are indicated in
the literature between 5 wt%!! and 10 wt%.?2 Beyond 10 wt%, they are considered
part of the base electrolyte. For concentrations from 0 to 10 wt%, the search space
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for optimal combination of both electrolytes is very large. Considering 0.05 wt% as
smallest increment in concentration that we could have achieved, the number of possible
combinations is: n = 200% = 40,000. Of course this is hypothetical figure, but it
illustrates the size of the search space. In order to investigate such wast search spaces
systematically, Bayesian optimization has been proven helpful. It is especially suitable
in a multivariable search space, where the correlation between input and output variable
is unknown.?®l In comparison to classical design of experiment Bayesian optimization
uses a Gaussian Process (GP) rather than a linear function to describe the correlation
between the parameters of the search space and the target variable. Guidance in the
selection of experiments is especially important when the experiments, as in this case,
are costly and time intensive. So it must be ensured that single experiments either
contribute to exploration: testing areas where the knowledge is small, or exploitation:
improving a known good result. Bayesian optimization is already very present in the field
of chemical engineering.?*?°! Recently, algorithm guided optimization of experiments
has been applied to battery electrolyte research. Whitacre et al.’®! presented a
guided search for different additive combinations to improve the electrolyte conductivity.
From the same group, Dave et al.?”) presented an experimental series to improve the
electrochemical stability window of electrolytes through selected additives. In both cases
the electrolytes were mixed in a fully automated setup and automatically evaluated ex-
situ. The results were processed with a framework for Bayesian optimization, guiding the
search towards unknown optimal solutions while considerably reducing the experimental
effort.

In contrast, this publication aimed at evaluating the electrolytes in-situ, in an
operational pouch cell, which didn’t allow a fully automated setup. The usage of an
algorithms to guide the experimental search required quantitative inputs and outputs
of the experiment. While the inputs were simply the two additive concentrations, the
quantitative outputs were more difficult to choose. Three methods have been used in the
past to evaluate the performance of electrolytes in LIB: the discharge capacity during
cyclic ageing,') the CE measured with high-precision coulombmetry (HPC)?® and the
voltage gradient through open-circuit voltage (OCV) tracking.?) The three methods can
be performed in very different time ranges and do not have the same significance. Cyclic
ageing takes several months, but is the most significant experiment as it relates directly
to application of LIB. The investigation of the CE takes one to two weeks. Burns et
al.l¥ showed that it allows to predict longterm ageing behaviour. While it is undoubted
that the CE is related to parasitic reactions driving the ageing of LIB,% its role as an
universal predictor of the ageing performance is not clear.®” The measurement of the
voltage gradient takes a few days up to a week. It requires the least complex equipment
and it is the fastest to perform. That is why it is state of the art as a post production
quality control method for LIB. The interpretation of the gradient is less clear. Burns
et al.} found consistent results between cyclic ageing, CE and a high voltage gradient.

As the duration of the cell performance evaluation is the bottleneck in the
optimization process, the usage of the fastest method is desired. We investigated if
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and to which extend this is possible. All three evaluation methods have been applied
to the samples made in these experiments. The cycling ageing was taken as benchmark
as it is most relevant for the application, it was complement by the average discharge
voltage as a proxy value for the cell resistance. This allowed to compare the different
methods and to evaluate which one is the most suitable for the algorithm used in the
optimization. The experiments were performed in four iterations. The results of the
previous iterations were used to decide on the selected experiments in the next iterations.
A total of 15 additive combinations were investigated.

Results and Discussion

Selection of experiments

After producing the cells of the first iteration the voltage gradient was the first available
value. As a smaller gradient had proven to be an indicator for better performance.l? To
select the experiments of the second iteration the algorithm was trained to minimized the
gradient (in absolute value). For this target variable, Figure 1a displays the expectation
calculated by the GP in a 2D-plot.

For the selection of the experiments of the third iteration results of the cyclic ageing
were available. While the selected value by the algorithm showed a much smaller voltage
gradient, it showed not the expected good cyclic performance. We concluded that the
minimization of the voltage gradient was not correlating with good cyclic performance,
hence it was not an appropriate indicator for improving the cyclic performance. Table 1
shows the suggestions after two iterations for different optimization parameters. The
best performing combination having the highest gradient, except for an outlier, we
selected the experiment proposed with the gradient maximization as optimization
criteria (Figure 2a). The outlier was excluded from further training. Additionally the
GP was trained with the relative capacity at 100 cycles (Figure 2f). The experiment
proposed for the CE maximization as an optimization criteria was discarded for being
to close to the bad performing 10 wt% FEC, 0 wt% VC.

For the fourth iteration the optimization was done with regard to the absolute
capacity rather than the relative as some experiments showed a strong initial decrease
in capacity during the formation, due to high consumption of active lithium during
the formation and in the first cycles, before stabilizing during further cycling. The
combination J-3 was repeated to confirm the outperforming results. The GP was
retrained a last time after the fourth iteration. The results are displayed in Table 1.
Absolute capacity and average discharge voltage at 400 cycles were included as training
target values for longterm ageing performance. Considering the low correlation
coefficient between the voltage OCV gradient and the longterm performance (see
Figure 3) the proposed experiments for minimizing and maximizing the gradient were
discarded. The remaining proposed experiments were in an area that was already well
covered by the previous experiments (see Figure 1d). At this point the cycling of the
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Figure 1. Expectancy of different target variables in the search space, describing the
a-piori-knowledge before each of the four proposed experiments. The x- and y-axis
indicate the concentrations of the additives, the color the estimated value of the target
variable. The position of the training values are indicated by blue crosses. The next
experiment proposed by the algorithm is indicated by a black cross.

two best performing additive combination of 1.85 wt% FEC, 1.1 wt% VC and 1.0 wt%
FEC, 1.0 wt% VC had already reached over 1000 cycles and retained a median capacity
of 992 mAh and 1004 mAh, respectively. We concluded that there was little room for
improvement to be gained with respect to performance and that the optimization was
completed.
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Figure 2. Plot of the of the investigated parameters in chronological order for each
electrolyte sorted by iteration. All measurements were done at 35°C.

Training data Opti. Parameter FEC | VC
Iter. n° wt% | wt%
1,2 Volt. Grad. Max. 2.29 | 7.47
1,2 Volt. Grad. Min. 1.85 | 1.09
1,2 CE Max. 9.1 0
1,2 Rel. Cap. @100 Cyc. Max. 1.61 | 1.97
1-4 Volt. Grad. Max. 10 5.8
1-4 Volt. Grad. Min. 4.3 9.4
1-4 CE Max. 24 1.8
1-4 Init. Abs. Cap. Max. 2.1 0
1-4 Abs. Cap. @400 Cyc. Max. 2.1 0
1-4 Avg. Dch. Volt. @400 Cyc. Max. | 0.1 2.5

Table 1. Proposed experiments by the optimization algorithm

Predictive ability of target variables

The delay with which a measurement is available after the electrolyte filling is the biggest

lever in reducing the iteration time of the optimization. We analysed the capability to

predict the final cell performance of five measurements available within 25 days after

the electrolyte filling. Figure 3 shows the correlation between the measurements and the

longterm performance indicators. The indicated correlation coefficient r is a Spearman’s

rank correlation coefficient, it was chosen as it is more robust with regard to outliers. In
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Figure 3. Correlation between capacity and avg. discharge voltage after 400 cycles
and measurements at early life. The measurements are sorted from left to right in
their order of appearance.

order to identify potential target variables for future optimization, we added the initial
capacity and the formation capacity. The charged capacity during formation (Figure
3a) showed a very weak correlation. The voltage gradient (Figure 3b) and the CE
(Figure 3c) have shown a good prediction capability in previous publications.?) But
the correlation between these two early measurements and the aged capacity at 400
cycles were not as strong as expected. A similar weak correlation between the ageing
performance and the CE was reported by Weng et al.?% In our case the initial capacity
(Figure 3d) of the cyclic ageing was the best indicator for the longterm performance.
The initial capacity was measured after the cells performed eleven full cycles on the
HPC, when the capacity loss due to formation and post formation was completed. This
conclusion was underlined by the experiments suggested by the algorithm based on the
first four iterations (see Table 1). The next proposed experiments based on the capacity
after 400 cycles and on the initial capacity were the same. We concluded that in this
case no additional knowledge was gained from 2.5 months of cycling. Hence, in order to
increase the speed of development, the first choice for the target variable is to use the
initial capacity followed by the CE.

Performance

The main goal of the selection of electrolyte additives quantities was to improve the
cyclic life. Figure 2 displays the performance tests sorted by iterations and Figure 4 the
longterm performance at 400 cycles, which was the ageing reached by the latest iteration.
Even if some compositions showed higher spread or outliers, performance differences
between the different additive compositions were well defined. For the combination J-4
one cell was destroyed before cycling started, therefore results for two cells were available.
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Between the iterations the performance of the same electrolyte composition, reproduced
for reference purposes, were not exactly identical. This was especially pronounced for
the voltage gradient. It systematically increased from iteration 2 to 4. The differences
between the iterations could be due to small difference in the preparation and in the
handling of the cells before the ageing experiment. But within the same iteration the
performance differences were consistent.
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Figure 4. Longterm performance after 400 cycles. Capacity, avg. discharge voltage
and rel. capacity sorted by additive combinations.

The two additive combinations D and J outperformed the other combinations in
longterm performance throughout two, respectively, three repetitions. Generally, we
observed that smaller quantities of additives lead to higher initial capacity, smaller over
potentials, and better longterm performance. All combinations with more than 1000
mAh of remaining capacity had less than 5 wt% of each additive, except for the cells
without additives. The cells with higher wt% of additives had a higher initial capacity
loss or a stronger decrease, leading to a capacity decline below 1000 mAh before 400
cycles. This was also reflected in the experiments selected by the algorithm, most of
it in areas with concentration below 4 wt%. The minimum for improving performance
lied at 1wt%. The cells with 0 wt% or 0.5 wt% performed below the top performing
combinations.

To better understand the effect of VC and FEC we evaluated the average discharge
voltage of one cycle vs. the discharge voltage of this cycle for the cells with 1 wt% of only
one of the two additives, displayed in Figure 5. The difference between the electrolytes
was significant. The cells filled with VC had a higher avg. discharge voltage for the
same capacity than cells filled with FEC, meaning that the cell with VC had smaller
over potentials, hence a smaller impedance compared to the cells filled with FEC. This
confirms previous results'? and is consistent with the EIS measurements of Burns et
al.,”l where the half circle is smaller for VC compared to FEC. This was not true for
higher concentrations of VC (see Figure 4). The additive combinations with 10 wt%
VC and a small amount of FEC (C,G) had systematically higher overpotentials and
lower capacity after 400 cycles than their counterparts with low VC concentration of 1
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wt% (0O,D). This was also consistent with earlier findings, which showed an increased
over potentials for concentrations of VC over 4.5 wt%.12 The comparison between low
and high concentration for FEC (N,D vs. B,H) showed a small but much less significant
deterioration, from low to high FEC concentration, in the overpotential and the capacity
after 400 cycles than for VC. We concluded that a higher FEC concentration has no
negative impact on the cell performance while there is a limit for the VC concentration.

The cells prepared in the iterations 1 and 2 had reached over 2000 cycles by the
end of the investigation as shown in Figure 6. We observed that cells cells with a VC
concentration of 10 wt% performed significantly worse than cells with a smaller VC
concentration. All of the cells that experienced a total loss of capacity by rollover had
10 wt% VC. For the cells with a VC and a FEC concentration of 10 wt% the early
rollover after less than 1000 cycles could be caused by the reduced concentration in
conductive salt. The conductive salt was present in the baseline electrolyte, but it was
not increased after the introduction of the additives. The other cells prepared with 10
wt% VC still experienced rollover or showed a strong capacity loss while the cells with
10 wt% FEC, with the same salt concentration, were stable for over 2000 cycles. The
cells with a VC concentration of 6.5 wt%, were also stable even-though they experienced
a strong initial loss. We concluded that a VC concentration of above 6.5 wt% is harmful
for the longterm stability of the cell. This is consistent with the results of Yamaguchi
et al.,’! which observed a deterioration of cell performance for a VC concentration of
above 10 wt%. We could not verify the trend observed by Burns et al.’! which showed
an increase in number of cycles before rollover for an increasing concentrations of VC
up to 6 wt% for a similar system. But our data did also not reject this observation as
only cells with a VC concentration of 10 wt% experienced a rollover, while all others
cell are still operational.

Many of the prepared cells experienced sharp drops and sometime consequent rises
of the capacity during cycling (see Figure 6). In Figure 5 the effect of such capacity drop
and its related effect on the cells average discharge voltage, which also drops. While
it is plausible that the average voltage changes over the ageing due to changing cell
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Figure 6. Discharged capacity over cycles for all investigated LIBs. The cycling was
performed at 35°C and cells were symmetrically charged and discharged with a 0.5 A
constant-current between 3-4.35V.

balancing, neither such a sharp drop, nor the fact that in some the capacity loss was
reversible can be explained by normal degradation. We excluded measurement errors
as a source of this disturbance. Micro-short circuits as cause for the drops were also
excluded, as the capacity loss was reversible. We concluded that an increase of the
overvoltage due to an increase of the cell impedance was at the origin of the capacity
drop. We found that the only plausible explanation for a strong rise in the internal
resistance within one cycle was the decontacting of the electrode sheets, triggered by
gassing. As the cells were not braced during cycling, the gas was able to expend and
evolve through the cell stack.®? This would also explain the reversibility of the capacity
loss. Gas can be created at the cathode and subsequently reduced at the anode.[3334 All
cells showed strong capacity drops and rises had 10 wt% of VC with different quantities
of FEC. Further we observed that after the rollover, the cells filled with 10 wt% FEC
and 10 wt% VC inflated due to gassing. We concluded without further proof, that the
gassing was linked to the high VC content.

Conclusion

This work aimed at determining the optimal combination of the electrolyte additives
VC and FEC for a NMC/graphite chemistry to improve cycle life. The iterative search
for the optimal combination was guided by a GP. Within three iterations two optimal
combinations could be determined and their performance was confirmed in a fourth
iteration. We showed that a search for an optimal combination of both additives is not
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trivial. Using a GP to guide the search helped accelerate the search and allowed to select
the combination of 1.85 wt% FEC and 1.1 wt% VC, which otherwise would not have
been found. The evaluation of the target variables led to the conclusion that the initial
capacity was the estimator with the best predictive ability for the longterm performance.
While it was not used for the optimization in this work, it should be retained for future
works. We observed that additive quantities below 5 wt% of each additive performed
better than above 5 wt%. Hence, when optimizing a combination of VC and FEC
the search should focus on this smaller search space. The investigation showed that
VC helps to reduce initial capacity loss and overvoltage increase while FEC improves
longterm stability. We also found that the concentration of VC should be limited due to
its negative impact on longterm stability and gassing behaviour. At the same time, an
increased FEC concentration had on the one hand no drawbacks but on the other hand
did not further improve the performance. Hence, the amount of used additive could be
reduced, which might contribute to reduce costs. The optimization under the constrain
of minimizing the used additive quantity could be a starting point for future work. The
presented results are a fine tuning for a very specific test scenario. Future work could
diversify the test conditions and perform application specific tests, the results of which
could be processed in a multi-objective optimization. By this means a purpose design
of the additives could be achieved. In general, the presented method could be applied
to other cell design parameters known or suspected to affect the lifetime performance.
The experimental results could be improved by formalizing or automatizing the sample
preparation and the testing process. This would further accelerate the process and
increase reproducibility. Finally, an application of parameter selection with Bayesian
optimization to an industrial battery production line seems possible and of great interest.

Experimental Section

Preparation of electrolyte solutions

All investigated electrolytes consist of 1.0 M lithium hexafluorophophate (LiPF6)
dissolved in a mixture of ethylene carbonate (EC) and ethylene carbonate (DMC),
(1:1, v:v) as baseline, and in mixtures with electrolyte additives of FEC and VC by
weight. All electrolyte components were obtained from Solvionic and used without
further purification. High quality and battery grade baseline (99.9% purity), FEC
(99.9%), and VC (99.9%). The electrolyte mixtures were prepared and stored inside
an argon-filled glove box (02 and H20 < 0.5ppm). Three cells were prepared for each
electrolyte sample.

Pouch cell design

1 Ah sealed and dry machine wound pouch cells were obtained from Li Fun Technology
Co., Ltd. The ratio of the first lithiation capacity of the negative electrode and
first delithiation capacity of the positive electrode of the pouch cells was 1.19 (i.e.,
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N/P, negative/positive). This configuration ensured that no lithium plating would
occur at the highest upper cut-off voltage (UCV) of 4.35V. The composition of the
negative electrode is 94.8% artificial graphite, 1.4% conductive carbon, and 3.8% binder.
The positive electrode is 94.0% NMC622, 4.0% conductive carbon, and 2.0% binder.
Investigations with an scanning electron microscope (SEM) showed that the particles of

the positive electrode were composed of single crystals, similar to the material presented
in. [39]
in.

Electrolyte filling, formation, and cycling protocols

The pouch cells were first opened inside an argon-filled glove box (LABstar, MBRAUN)
with an proper inert atmosphere (02 and H20 < 0.5 ppm), followed by dying at 80°C for
at least 12 hours. Thereafter, the pouch cells were filled (by weight) with the electrolyte
mixtures. For this doing, the cells were placed on a high precision scale (MSA3203P-100
DU, Sartorius AG) and were filled with 4.5 g of electrolyte solution. To accelerate and
guarantee proper wetting of the active materials and separator with electrolyte solution
and thereby removing residual gases out of the pores, the electrolyte injected pouch
cells were transferred to an airlock. Here, a negative pressure of -0.6 atm was applied
for 20 seconds. Afterwards the pouch cells were vacuum-sealed with a vacuum sealing
machine (MSK-115A, MTI KJ Group).

For the formation, pouch cells were clamped between two metal plates and a
pressure of 0.8 MPa was applied by four screws with special attention not to short
circuit the cells. The clamped pouch cells were placed in an oven at 80°C (UFE 500,
Memmert GmbH + Co. KG). After a resting time of 8 hours at OCV, which ensures
a complete wetting of the active materials and separator by the electrolyte solution of
the pouch cells, the protocol of the formation was as follows: pouch cells were charged
once with a constant current of 0.2C to 4.35V UCV without constant voltage phase
and discharged with constant current of 0.2C to 3.9 V. Thereafter, the pouch cells were
taken back to an argon-filled glove box, in which they were opened and resealed under
vacuum in order to remove any gas formed during the formation step.

Testing methods

The electrical tests after the formation were performed in an oven (UFE 500, Memmert
GmbH + Co. KG) at 35°C. After the formation, the cells underwent successively three
testing methods. First the OCV was measured for 3 to 10 days. The voltage was
automatically measured every 2 hours. In between the measurements, the cells were
electrically disconnected from the measurement device by a relay, in order to insure
no discharge through the measurement circuit was possible. The time gradient of the
voltage was calculated from the voltage time series. The voltage gradient values were
used in the following to evaluate the cells performance.

It followed a HPC measurement using a Novonix UHPC 2A. The pouch cells were
cycled in the potential range of 4.35-3V with a C-Rate of C/20, for 11 to 13 Cycles.
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To avoid the low CE due to post formation in the first cycles, the cell performance was
evaluated from the average coulombic efficiency of cycles 4 to 11. After the cycling for
HPC the cells were stored again for 5 to 10 days at 35°C and 3.0 V before the cyclic
ageing was started.

The pouch cells were cycled in the full potential rang of 4.35-3V with a constant
current charge and constant-current discharge protocol using a Neware BTS (CT-ZW J-
45-1-1U). Cells were symmetrically charged and discharged with a 0.5 A (~0.5C)
constant-current. No resting time and no constant-voltage phase were applied. The
cells were cycled without pressure. Absolute capacity and capacity relative to the first
cycle at cycle 100 and at cycle 400 were used to to evaluate the performance. For each
discharge cycle the average voltage was calculated. The average was calculated with
regard to time, which was equivalent to electric charge at constant current.

Selection of experiments and optimization

To enhance the search for the optimal additive composition bayesian optimization
or kriging was used to select the experiments. As a functional connection between
the concentrations of the additives * = (crpc,cve)’ and the ageing performance is
unknown, bayesian optimization substitutes the connection by a GP. A GP can be
described as a distribution of functions connecting the input variables and the output
variable of the experiment, it is written as:

f(@) ~ GP(m(x), (z, ")) (1)

With the mean function m(x) being the first moment E[f(z)] and the covariance
function k(z, z’) being the second moment E[(f(z)—m(z))(f(z")—m(z"))]. In this case,
the GP was used with a zero mean function leaving the covariance function for regression.
The covariance functions describes the smoothness of the target variable. The covariance
function (or kernel) Matérn 5/2 was chosen according to the recommendation by Snoek

36 Snoek favored the Matérn kernel over the common choice of the squared

et al.
exponential kernel for it has less strict smoothness. The GP was trained with tuples of
VC and FEC concentrations (0-10 wt%) as input or predictor variables and one of the
measurement results (voltage gradient, CE and absolute or relative capacity at cycle
100) was used as dependent or target variable. All values were normalized to values
between 0 and 1. The mean of the measurement values of each concentration tuple was
taken as target variable in the training while the variance of the measurement values
was added as noise to the covariance.

With the GP trained by the a-priori-knowledge of the previous experiments the
next experiments could be chosen to maximize the target value (exploitation) or to
minimize the unknown (exploration). For this end, three algorithms could be used:
the upper confidence bounds method (UCB), the expected improvement method (EI),
or the probability improvement criterion (POI). POI was dismissed due to its slower
convergence.?%37 UCB allowed to guide the suggestion through a parameter, either
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in direction of improvement or in direction of exploration. This would have required
further tuning of the parameter so EI was chosen, as it was the best compromise between
improvement and exploration. The suggestion had a random character, as it often the
case with algorithmic search, leading to changing results when the algorithm was run
a few times in a row. To cope with fluctuating results, the algorithm was executed
100 times. In all cases over 70 out of 100 results were the same tuple, which was then
selected. The complete algorithm is presented by Snoek et al.l*S! For this publication it
was used in its python implementation. [l

Duration: Duration:
2-3 Days >30 Days

Human selected
experiments

Test results of previous iteration are
used for GP training

Figure 7. Flowchart describing the experimentation process. The executed
experiments are a combination of human selected and machine selected ones.

To create and increase the prior knowledge used to train the GP, the search was
done in four iterations. Each iteration composed of three to five additive combinations,
called experiments, listed in Table 2. The experiments of the first iteration allowed
to explore and delimit the search space, hence additive concentrations at the edges
were selected. In the following iterations were prepared: reference experiments to
insure reproducibility, human selected exploration experiments and machine selected
experiments. The combination of machine selected and human selected experiments has
also recently been discussed by Wang et al.?®l Before each experiment selection the GP
was retrained with the results of all previous iterations, leading to an effect of reinforced
learning. As displayed in Figure 7, the knowledge about the search space grows through
a combination of human and machine selected experiments. The knowledge in the
GP can visualized for a two dimensional search space by plotting the expectation (see
Figure 1) and its confidence interval (see Figure Al).
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Iteration | FEC | VC Motivation 1D
n° wt% | wt%
1 10 10 Exploration Al
1 10 0 Exploration B1
1 0 10 Exploration C1
1 1 1 Exploration D1
2 5) 5) Exploration E2
2 0 0 Exploration F2
2 1 10 Exploration G2
2 10 1 Exploration H2
2 0 10 Reference (Outlier) C2
2 2.5 6.5 Minimizing OCV Gradient 12
3 1.85 1.1 Maximizing OCV Gradient J3
3 1 1 Reference (Best Iter. 1) D3
3 0.5 0.5 Exploration K3
3 10 10 Reference (Worst) A3
3 1.6 2 Maximizing rel. cap. at 100 cycles | L3
4 3.6 1.1 | Maximizing abs. cap. at 100 cycles | M4
4 1 Reference (Best Iter. 1) D4
4 Exploration N4
4 0 1 Exploration 04
4 1.85 | 1.1 Reference (Best Iter. 3) J4

Table 2. Selected additive combinations for experiment. Experiment with reference
or exploration as motivation were human selected, all other experiments were selected
by the algorithm.
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Graphical Abstract
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Bayesian optimization allowed optimizing the additives concentrations of
fluoroethylene carbonate (FEC) and vinylene carbonate (VC) in order to maximize
lifetime of a NMC-622/graphite lithium-ion battery. The electrolytes were evaluated
in-situ, in pouch cells. The investigation included a systematic analysis of optimization
target values and an evaluation of impact on lifetime performance of the additives.
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Annexes
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Figure A1l. Confidence of different target variables in the search space, as returned
by the GP. It describes the confidence due to a-piori-knowledge before each of the four
proposed experiments. The x- and y-axis indicate the concentrations of the additives,
the color the estimated value of the target variable. The position of the training values
are indicated by blue crosses. The next experiment proposed by the algorithm is
indicated by a black cross.



