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Abstract. The composition of the liquid electrolyte is a key factor in lifetime

performance of lithium-ion batteries. The selection and quantification of additives to

the electrolyte is an active field of research. This study focuses on finding the optimal

additive combination of fluoroethylene carbonate (FEC) and vinylene carbonate (VC)

for NMC622-Graphite cells. The central goal of this work is to accelerate the

experimental search in a large search area by using a Bayesian-optimization algorithm

to guide the search. Different measurements are used as target variable such as

open-circuit voltage gradient and coulombic efficiency. Consequentially, the capability

of these measurements for accelerated lifetime prediction compared to conventional

ageing tests by cycling is investigated. The search gathered and confirmed additive

combinations with excellent performance after four iterations with a total of 15 additive

combinations analyzed. The results of this study give insights into the interaction of

VC and FEC with regard to ageing.
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Introduction

The design of Lithium-Ion Battery (LIB) is constantly improving with regards to energy

density and longevity. One lever for the improvement of LIB with liquid electrolytes

is the use of additives in the electrolyte. Additives have been a key focus of the

cell improvements in past years.[1–5] Additives influence the initial solid electrolyte

interphase (SEI) formation.[6] For high surface graphite anode materials, reducing the

lithium inventory loss during formation increases the energy density.[7] Over the lifetime,

additives stabilize the SEI under operating conditions, prevent further reaction of the

electrolyte with the anode material,[8] and can suppress transition metal cross-talk.[9]

Continuous formation and reformation of SEI is a key ageing process of LIB, driving

loss of lithium inventory and increase of the internal resistance.[10] Additives have also

extended the duration of cycle life before complete loss of capacity due to rollover.[2]

The additives vinylene carbonate (VC) and fluoroethylene carbonate (FEC) are among

the most commonly used ones. Both are reported to contribute to the formation of CO2

(carbon dioxide) which reacts to Li2CO3 (lithium carbonate), a key component of the

SEI.[8, 11] VC is an established additive in the industry known to be extending cycle life

of graphite based anodes.[12] Burns et al. studied the impact of different amounts of VC,

showing that increasing the VC concentration increased cycle life. This was explained

by the consumption of VC rather than other electrolyte components such as EC during

formation, leaving EC for consumption during cycle life.[13] It was reported that past

a threshold of 4 weight-% (wt%) of VC concentration, the charge transfer resistance

increased, reducing the cell performance at higher C-rates.[2] VC is also reported

to increase irreversible capacity loss during formation[14] and to decrease coulombic

efficiency (CE)[1, 14] leading to the conclusion that the VC concentration should not be

too high. This leaves the question: What is the optimal quantity of VC?

Using FEC as an additive has proven to extend cycle life for silicon composed

anodes. Intan et al.[15] showed that adding FEC to the electrolyte leads to a thinner

and more flexible SEI. FEC also showed positive effects on cycle life of cells with

pure graphite anodes, especially at higher temperatures.[16, 17] Besides the formation of

lithium carbonates, FEC also leads to the formation of LiF (lithium fluoride),[18] which is

highly desirable for creating a stable SEI.[19, 20] Burns et al. showed that a combination of

VC and FEC can outperform cells which only used one of the two additives with regard

to cycle life.[2] The idea that both additives interact during formation is supported by

the findings of Michan et al.,[21] showing that both additives lead to formation of the

same SEI components but in different concentrations. Zhang et al.[1] points out that

there is a possible reaction path from FEC to VC, which makes the interaction of the

two additives even more complex.

Considering the results of previous works, we assumed that there is an optimal

combination of VC and FEC. Maximum concentrations of additives are indicated in

the literature between 5 wt%[1] and 10 wt%.[22] Beyond 10 wt%, they are considered

part of the base electrolyte. For concentrations from 0 to 10 wt%, the search space
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for optimal combination of both electrolytes is very large. Considering 0.05 wt% as

smallest increment in concentration that we could have achieved, the number of possible

combinations is: n = 2002 = 40, 000. Of course this is hypothetical figure, but it

illustrates the size of the search space. In order to investigate such wast search spaces

systematically, Bayesian optimization has been proven helpful. It is especially suitable

in a multivariable search space, where the correlation between input and output variable

is unknown.[23] In comparison to classical design of experiment Bayesian optimization

uses a Gaussian Process (GP) rather than a linear function to describe the correlation

between the parameters of the search space and the target variable. Guidance in the

selection of experiments is especially important when the experiments, as in this case,

are costly and time intensive. So it must be ensured that single experiments either

contribute to exploration: testing areas where the knowledge is small, or exploitation:

improving a known good result. Bayesian optimization is already very present in the field

of chemical engineering.[24, 25] Recently, algorithm guided optimization of experiments

has been applied to battery electrolyte research. Whitacre et al.[26] presented a

guided search for different additive combinations to improve the electrolyte conductivity.

From the same group, Dave et al.[27] presented an experimental series to improve the

electrochemical stability window of electrolytes through selected additives. In both cases

the electrolytes were mixed in a fully automated setup and automatically evaluated ex-

situ. The results were processed with a framework for Bayesian optimization, guiding the

search towards unknown optimal solutions while considerably reducing the experimental

effort.

In contrast, this publication aimed at evaluating the electrolytes in-situ, in an

operational pouch cell, which didn’t allow a fully automated setup. The usage of an

algorithms to guide the experimental search required quantitative inputs and outputs

of the experiment. While the inputs were simply the two additive concentrations, the

quantitative outputs were more difficult to choose. Three methods have been used in the

past to evaluate the performance of electrolytes in LIB: the discharge capacity during

cyclic ageing,[17] the CE measured with high-precision coulombmetry (HPC)[28] and the

voltage gradient through open-circuit voltage (OCV) tracking.[2] The three methods can

be performed in very different time ranges and do not have the same significance. Cyclic

ageing takes several months, but is the most significant experiment as it relates directly

to application of LIB. The investigation of the CE takes one to two weeks. Burns et

al.[2] showed that it allows to predict longterm ageing behaviour. While it is undoubted

that the CE is related to parasitic reactions driving the ageing of LIB,[29] its role as an

universal predictor of the ageing performance is not clear.[30] The measurement of the

voltage gradient takes a few days up to a week. It requires the least complex equipment

and it is the fastest to perform. That is why it is state of the art as a post production

quality control method for LIB. The interpretation of the gradient is less clear. Burns

et al.[2] found consistent results between cyclic ageing, CE and a high voltage gradient.

As the duration of the cell performance evaluation is the bottleneck in the

optimization process, the usage of the fastest method is desired. We investigated if
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and to which extend this is possible. All three evaluation methods have been applied

to the samples made in these experiments. The cycling ageing was taken as benchmark

as it is most relevant for the application, it was complement by the average discharge

voltage as a proxy value for the cell resistance. This allowed to compare the different

methods and to evaluate which one is the most suitable for the algorithm used in the

optimization. The experiments were performed in four iterations. The results of the

previous iterations were used to decide on the selected experiments in the next iterations.

A total of 15 additive combinations were investigated.

Results and Discussion

Selection of experiments

After producing the cells of the first iteration the voltage gradient was the first available

value. As a smaller gradient had proven to be an indicator for better performance.[2] To

select the experiments of the second iteration the algorithm was trained to minimized the

gradient (in absolute value). For this target variable, Figure 1a displays the expectation

calculated by the GP in a 2D-plot.

For the selection of the experiments of the third iteration results of the cyclic ageing

were available. While the selected value by the algorithm showed a much smaller voltage

gradient, it showed not the expected good cyclic performance. We concluded that the

minimization of the voltage gradient was not correlating with good cyclic performance,

hence it was not an appropriate indicator for improving the cyclic performance. Table 1

shows the suggestions after two iterations for different optimization parameters. The

best performing combination having the highest gradient, except for an outlier, we

selected the experiment proposed with the gradient maximization as optimization

criteria (Figure 2a). The outlier was excluded from further training. Additionally the

GP was trained with the relative capacity at 100 cycles (Figure 2f). The experiment

proposed for the CE maximization as an optimization criteria was discarded for being

to close to the bad performing 10 wt% FEC, 0 wt% VC.

For the fourth iteration the optimization was done with regard to the absolute

capacity rather than the relative as some experiments showed a strong initial decrease

in capacity during the formation, due to high consumption of active lithium during

the formation and in the first cycles, before stabilizing during further cycling. The

combination J-3 was repeated to confirm the outperforming results. The GP was

retrained a last time after the fourth iteration. The results are displayed in Table 1.

Absolute capacity and average discharge voltage at 400 cycles were included as training

target values for longterm ageing performance. Considering the low correlation

coefficient between the voltage OCV gradient and the longterm performance (see

Figure 3) the proposed experiments for minimizing and maximizing the gradient were

discarded. The remaining proposed experiments were in an area that was already well

covered by the previous experiments (see Figure 1d). At this point the cycling of the
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a)   Voltage Gradient b)   Voltage Gradient

c)   Relative Capacity at 100 Cycles d)   Absolute Capacity at 100 Cycles
Evaluations after 2nd iteration Evaluations after 3rd iteration

Figure 1. Expectancy of different target variables in the search space, describing the

a-piori-knowledge before each of the four proposed experiments. The x- and y-axis

indicate the concentrations of the additives, the color the estimated value of the target

variable. The position of the training values are indicated by blue crosses. The next

experiment proposed by the algorithm is indicated by a black cross.

two best performing additive combination of 1.85 wt% FEC, 1.1 wt% VC and 1.0 wt%

FEC, 1.0 wt% VC had already reached over 1000 cycles and retained a median capacity

of 992 mAh and 1004 mAh, respectively. We concluded that there was little room for

improvement to be gained with respect to performance and that the optimization was

completed.
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Figure 2. Plot of the of the investigated parameters in chronological order for each

electrolyte sorted by iteration. All measurements were done at 35°C.

Training data Opti. Parameter FEC VC

Iter. n° wt% wt%

1,2 Volt. Grad. Max. 2.29 7.47

1,2 Volt. Grad. Min. 1.85 1.09

1,2 CE Max. 9.1 0

1,2 Rel. Cap. @100 Cyc. Max. 1.61 1.97

1-4 Volt. Grad. Max. 10 5.8

1-4 Volt. Grad. Min. 4.3 9.4

1-4 CE Max. 2.4 1.8

1-4 Init. Abs. Cap. Max. 2.1 0

1-4 Abs. Cap. @400 Cyc. Max. 2.1 0

1-4 Avg. Dch. Volt. @400 Cyc. Max. 0.1 2.5

Table 1. Proposed experiments by the optimization algorithm

Predictive ability of target variables

The delay with which a measurement is available after the electrolyte filling is the biggest

lever in reducing the iteration time of the optimization. We analysed the capability to

predict the final cell performance of five measurements available within 25 days after

the electrolyte filling. Figure 3 shows the correlation between the measurements and the

longterm performance indicators. The indicated correlation coefficient r is a Spearman’s

rank correlation coefficient, it was chosen as it is more robust with regard to outliers. In
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Figure 3. Correlation between capacity and avg. discharge voltage after 400 cycles

and measurements at early life. The measurements are sorted from left to right in

their order of appearance.

order to identify potential target variables for future optimization, we added the initial

capacity and the formation capacity. The charged capacity during formation (Figure

3a) showed a very weak correlation. The voltage gradient (Figure 3b) and the CE

(Figure 3c) have shown a good prediction capability in previous publications.[2] But

the correlation between these two early measurements and the aged capacity at 400

cycles were not as strong as expected. A similar weak correlation between the ageing

performance and the CE was reported by Weng et al.[30] In our case the initial capacity

(Figure 3d) of the cyclic ageing was the best indicator for the longterm performance.

The initial capacity was measured after the cells performed eleven full cycles on the

HPC, when the capacity loss due to formation and post formation was completed. This

conclusion was underlined by the experiments suggested by the algorithm based on the

first four iterations (see Table 1). The next proposed experiments based on the capacity

after 400 cycles and on the initial capacity were the same. We concluded that in this

case no additional knowledge was gained from 2.5 months of cycling. Hence, in order to

increase the speed of development, the first choice for the target variable is to use the

initial capacity followed by the CE.

Performance

The main goal of the selection of electrolyte additives quantities was to improve the

cyclic life. Figure 2 displays the performance tests sorted by iterations and Figure 4 the

longterm performance at 400 cycles, which was the ageing reached by the latest iteration.

Even if some compositions showed higher spread or outliers, performance differences

between the different additive compositions were well defined. For the combination J-4

one cell was destroyed before cycling started, therefore results for two cells were available.
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Between the iterations the performance of the same electrolyte composition, reproduced

for reference purposes, were not exactly identical. This was especially pronounced for

the voltage gradient. It systematically increased from iteration 2 to 4. The differences
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handling of the cells before the ageing experiment. But within the same iteration the

performance differences were consistent.
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Figure 4. Longterm performance after 400 cycles. Capacity, avg. discharge voltage

and rel. capacity sorted by additive combinations.

The two additive combinations D and J outperformed the other combinations in

longterm performance throughout two, respectively, three repetitions. Generally, we

observed that smaller quantities of additives lead to higher initial capacity, smaller over

potentials, and better longterm performance. All combinations with more than 1000

mAh of remaining capacity had less than 5 wt% of each additive, except for the cells

without additives. The cells with higher wt% of additives had a higher initial capacity

loss or a stronger decrease, leading to a capacity decline below 1000 mAh before 400

cycles. This was also reflected in the experiments selected by the algorithm, most of

it in areas with concentration below 4 wt%. The minimum for improving performance

lied at 1wt%. The cells with 0 wt% or 0.5 wt% performed below the top performing

combinations.

To better understand the effect of VC and FEC we evaluated the average discharge

voltage of one cycle vs. the discharge voltage of this cycle for the cells with 1 wt% of only

one of the two additives, displayed in Figure 5. The difference between the electrolytes

was significant. The cells filled with VC had a higher avg. discharge voltage for the

same capacity than cells filled with FEC, meaning that the cell with VC had smaller

over potentials, hence a smaller impedance compared to the cells filled with FEC. This

confirms previous results[12] and is consistent with the EIS measurements of Burns et

al.,[2] where the half circle is smaller for VC compared to FEC. This was not true for

higher concentrations of VC (see Figure 4). The additive combinations with 10 wt%

VC and a small amount of FEC (C,G) had systematically higher overpotentials and

lower capacity after 400 cycles than their counterparts with low VC concentration of 1
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wt% (O,D). This was also consistent with earlier findings, which showed an increased

over potentials for concentrations of VC over 4.5 wt%.[2] The comparison between low

and high concentration for FEC (N,D vs. B,H) showed a small but much less significant

deterioration, from low to high FEC concentration, in the overpotential and the capacity

after 400 cycles than for VC. We concluded that a higher FEC concentration has no

negative impact on the cell performance while there is a limit for the VC concentration.

The cells prepared in the iterations 1 and 2 had reached over 2000 cycles by the

end of the investigation as shown in Figure 6. We observed that cells cells with a VC

concentration of 10 wt% performed significantly worse than cells with a smaller VC

concentration. All of the cells that experienced a total loss of capacity by rollover had

10 wt% VC. For the cells with a VC and a FEC concentration of 10 wt% the early

rollover after less than 1000 cycles could be caused by the reduced concentration in

conductive salt. The conductive salt was present in the baseline electrolyte, but it was

not increased after the introduction of the additives. The other cells prepared with 10

wt% VC still experienced rollover or showed a strong capacity loss while the cells with

10 wt% FEC, with the same salt concentration, were stable for over 2000 cycles. The

cells with a VC concentration of 6.5 wt%, were also stable even-though they experienced

a strong initial loss. We concluded that a VC concentration of above 6.5 wt% is harmful

for the longterm stability of the cell. This is consistent with the results of Yamaguchi

et al.,[31] which observed a deterioration of cell performance for a VC concentration of

above 10 wt%. We could not verify the trend observed by Burns et al.[2] which showed

an increase in number of cycles before rollover for an increasing concentrations of VC

up to 6 wt% for a similar system. But our data did also not reject this observation as

only cells with a VC concentration of 10 wt% experienced a rollover, while all others

cell are still operational.

Many of the prepared cells experienced sharp drops and sometime consequent rises

of the capacity during cycling (see Figure 6). In Figure 5 the effect of such capacity drop

and its related effect on the cells average discharge voltage, which also drops. While

it is plausible that the average voltage changes over the ageing due to changing cell
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Figure 6. Discharged capacity over cycles for all investigated LIBs. The cycling was

performed at 35°C and cells were symmetrically charged and discharged with a 0.5 A

constant-current between 3-4.35V.

balancing, neither such a sharp drop, nor the fact that in some the capacity loss was

reversible can be explained by normal degradation. We excluded measurement errors

as a source of this disturbance. Micro-short circuits as cause for the drops were also

excluded, as the capacity loss was reversible. We concluded that an increase of the

overvoltage due to an increase of the cell impedance was at the origin of the capacity

drop. We found that the only plausible explanation for a strong rise in the internal

resistance within one cycle was the decontacting of the electrode sheets, triggered by

gassing. As the cells were not braced during cycling, the gas was able to expend and

evolve through the cell stack.[32] This would also explain the reversibility of the capacity

loss. Gas can be created at the cathode and subsequently reduced at the anode.[33, 34] All

cells showed strong capacity drops and rises had 10 wt% of VC with different quantities

of FEC. Further we observed that after the rollover, the cells filled with 10 wt% FEC

and 10 wt% VC inflated due to gassing. We concluded without further proof, that the

gassing was linked to the high VC content.

Conclusion

This work aimed at determining the optimal combination of the electrolyte additives

VC and FEC for a NMC/graphite chemistry to improve cycle life. The iterative search

for the optimal combination was guided by a GP. Within three iterations two optimal

combinations could be determined and their performance was confirmed in a fourth

iteration. We showed that a search for an optimal combination of both additives is not
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trivial. Using a GP to guide the search helped accelerate the search and allowed to select

the combination of 1.85 wt% FEC and 1.1 wt% VC, which otherwise would not have

been found. The evaluation of the target variables led to the conclusion that the initial

capacity was the estimator with the best predictive ability for the longterm performance.

While it was not used for the optimization in this work, it should be retained for future

works. We observed that additive quantities below 5 wt% of each additive performed

better than above 5 wt%. Hence, when optimizing a combination of VC and FEC

the search should focus on this smaller search space. The investigation showed that

VC helps to reduce initial capacity loss and overvoltage increase while FEC improves

longterm stability. We also found that the concentration of VC should be limited due to

its negative impact on longterm stability and gassing behaviour. At the same time, an

increased FEC concentration had on the one hand no drawbacks but on the other hand

did not further improve the performance. Hence, the amount of used additive could be

reduced, which might contribute to reduce costs. The optimization under the constrain

of minimizing the used additive quantity could be a starting point for future work. The

presented results are a fine tuning for a very specific test scenario. Future work could

diversify the test conditions and perform application specific tests, the results of which

could be processed in a multi-objective optimization. By this means a purpose design

of the additives could be achieved. In general, the presented method could be applied

to other cell design parameters known or suspected to affect the lifetime performance.

The experimental results could be improved by formalizing or automatizing the sample

preparation and the testing process. This would further accelerate the process and

increase reproducibility. Finally, an application of parameter selection with Bayesian

optimization to an industrial battery production line seems possible and of great interest.

Experimental Section

Preparation of electrolyte solutions

All investigated electrolytes consist of 1.0 M lithium hexafluorophophate (LiPF6)

dissolved in a mixture of ethylene carbonate (EC) and ethylene carbonate (DMC),

(1:1, v:v) as baseline, and in mixtures with electrolyte additives of FEC and VC by

weight. All electrolyte components were obtained from Solvionic and used without

further purification. High quality and battery grade baseline (99.9% purity), FEC

(99.9%), and VC (99.9%). The electrolyte mixtures were prepared and stored inside

an argon-filled glove box (O2 and H2O < 0.5 ppm). Three cells were prepared for each

electrolyte sample.

Pouch cell design

1Ah sealed and dry machine wound pouch cells were obtained from Li Fun Technology

Co., Ltd. The ratio of the first lithiation capacity of the negative electrode and

first delithiation capacity of the positive electrode of the pouch cells was 1.19 (i.e.,
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N/P, negative/positive). This configuration ensured that no lithium plating would

occur at the highest upper cut-off voltage (UCV) of 4.35V. The composition of the

negative electrode is 94.8% artificial graphite, 1.4% conductive carbon, and 3.8% binder.

The positive electrode is 94.0% NMC622, 4.0% conductive carbon, and 2.0% binder.

Investigations with an scanning electron microscope (SEM) showed that the particles of

the positive electrode were composed of single crystals, similar to the material presented

in.[35]

Electrolyte filling, formation, and cycling protocols

The pouch cells were first opened inside an argon-filled glove box (LABstar, MBRAUN)

with an proper inert atmosphere (O2 and H2O < 0.5 ppm), followed by dying at 80°C for

at least 12 hours. Thereafter, the pouch cells were filled (by weight) with the electrolyte

mixtures. For this doing, the cells were placed on a high precision scale (MSA3203P-100

DU, Sartorius AG) and were filled with 4.5 g of electrolyte solution. To accelerate and

guarantee proper wetting of the active materials and separator with electrolyte solution

and thereby removing residual gases out of the pores, the electrolyte injected pouch

cells were transferred to an airlock. Here, a negative pressure of -0.6 atm was applied

for 20 seconds. Afterwards the pouch cells were vacuum-sealed with a vacuum sealing

machine (MSK-115A, MTI KJ Group).

For the formation, pouch cells were clamped between two metal plates and a

pressure of 0.8MPa was applied by four screws with special attention not to short

circuit the cells. The clamped pouch cells were placed in an oven at 80°C (UFE 500,

Memmert GmbH + Co. KG). After a resting time of 8 hours at OCV, which ensures

a complete wetting of the active materials and separator by the electrolyte solution of

the pouch cells, the protocol of the formation was as follows: pouch cells were charged

once with a constant current of 0.2C to 4.35V UCV without constant voltage phase

and discharged with constant current of 0.2C to 3.9V. Thereafter, the pouch cells were

taken back to an argon-filled glove box, in which they were opened and resealed under

vacuum in order to remove any gas formed during the formation step.

Testing methods

The electrical tests after the formation were performed in an oven (UFE 500, Memmert

GmbH + Co. KG) at 35°C. After the formation, the cells underwent successively three

testing methods. First the OCV was measured for 3 to 10 days. The voltage was

automatically measured every 2 hours. In between the measurements, the cells were

electrically disconnected from the measurement device by a relay, in order to insure

no discharge through the measurement circuit was possible. The time gradient of the

voltage was calculated from the voltage time series. The voltage gradient values were

used in the following to evaluate the cells performance.

It followed a HPC measurement using a Novonix UHPC 2A. The pouch cells were

cycled in the potential range of 4.35-3V with a C-Rate of C/20, for 11 to 13 Cycles.
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To avoid the low CE due to post formation in the first cycles, the cell performance was

evaluated from the average coulombic efficiency of cycles 4 to 11. After the cycling for

HPC the cells were stored again for 5 to 10 days at 35°C and 3.0 V before the cyclic

ageing was started.

The pouch cells were cycled in the full potential rang of 4.35-3V with a constant

current charge and constant-current discharge protocol using a Neware BTS (CT-ZWJ-

4S-1-1U). Cells were symmetrically charged and discharged with a 0.5 A (∼0.5C)

constant-current. No resting time and no constant-voltage phase were applied. The

cells were cycled without pressure. Absolute capacity and capacity relative to the first

cycle at cycle 100 and at cycle 400 were used to to evaluate the performance. For each

discharge cycle the average voltage was calculated. The average was calculated with

regard to time, which was equivalent to electric charge at constant current.

Selection of experiments and optimization

To enhance the search for the optimal additive composition bayesian optimization

or kriging was used to select the experiments. As a functional connection between

the concentrations of the additives x = (cFEC , cV C)
T and the ageing performance is

unknown, bayesian optimization substitutes the connection by a GP. A GP can be

described as a distribution of functions connecting the input variables and the output

variable of the experiment, it is written as:

f(x) ∼ GP (m(x), κ(x, x′)) (1)

With the mean function m(x) being the first moment E[f(x)] and the covariance

function κ(x, x′) being the second moment E[(f(x)−m(x))(f(x′)−m(x′))]. In this case,

the GP was used with a zero mean function leaving the covariance function for regression.

The covariance functions describes the smoothness of the target variable. The covariance

function (or kernel) Matérn 5/2 was chosen according to the recommendation by Snoek

et al.[36] Snoek favored the Matérn kernel over the common choice of the squared

exponential kernel for it has less strict smoothness. The GP was trained with tuples of

VC and FEC concentrations (0-10 wt%) as input or predictor variables and one of the

measurement results (voltage gradient, CE and absolute or relative capacity at cycle

100) was used as dependent or target variable. All values were normalized to values

between 0 and 1. The mean of the measurement values of each concentration tuple was

taken as target variable in the training while the variance of the measurement values

was added as noise to the covariance.

With the GP trained by the a-priori-knowledge of the previous experiments the

next experiments could be chosen to maximize the target value (exploitation) or to

minimize the unknown (exploration). For this end, three algorithms could be used:

the upper confidence bounds method (UCB), the expected improvement method (EI),

or the probability improvement criterion (POI). POI was dismissed due to its slower

convergence.[36, 37] UCB allowed to guide the suggestion through a parameter, either
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in direction of improvement or in direction of exploration. This would have required

further tuning of the parameter so EI was chosen, as it was the best compromise between

improvement and exploration. The suggestion had a random character, as it often the

case with algorithmic search, leading to changing results when the algorithm was run

a few times in a row. To cope with fluctuating results, the algorithm was executed

100 times. In all cases over 70 out of 100 results were the same tuple, which was then

selected. The complete algorithm is presented by Snoek et al.[36] For this publication it

was used in its python implementation.[38]

GP
Selection
Algorithm

Electrolyte
Mixing

&
Cell

Prepar-
ation

Pouch 
Cell 

Testing

Test results of previous iteration are 
used for GP training 

Human selected 
experiments

Duration: 
2-3 Days

Duration: 
>30 Days

Figure 7. Flowchart describing the experimentation process. The executed

experiments are a combination of human selected and machine selected ones.

To create and increase the prior knowledge used to train the GP, the search was

done in four iterations. Each iteration composed of three to five additive combinations,

called experiments, listed in Table 2. The experiments of the first iteration allowed

to explore and delimit the search space, hence additive concentrations at the edges

were selected. In the following iterations were prepared: reference experiments to

insure reproducibility, human selected exploration experiments and machine selected

experiments. The combination of machine selected and human selected experiments has

also recently been discussed by Wang et al.[25] Before each experiment selection the GP

was retrained with the results of all previous iterations, leading to an effect of reinforced

learning. As displayed in Figure 7, the knowledge about the search space grows through

a combination of human and machine selected experiments. The knowledge in the

GP can visualized for a two dimensional search space by plotting the expectation (see

Figure 1) and its confidence interval (see Figure A1).
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Iteration FEC VC Motivation ID

n° wt% wt%

1 10 10 Exploration A1

1 10 0 Exploration B1

1 0 10 Exploration C1

1 1 1 Exploration D1

2 5 5 Exploration E2

2 0 0 Exploration F2

2 1 10 Exploration G2

2 10 1 Exploration H2

2 0 10 Reference (Outlier) C2

2 2.5 6.5 Minimizing OCV Gradient I2

3 1.85 1.1 Maximizing OCV Gradient J3

3 1 1 Reference (Best Iter. 1) D3

3 0.5 0.5 Exploration K3

3 10 10 Reference (Worst) A3

3 1.6 2 Maximizing rel. cap. at 100 cycles L3

4 3.6 1.1 Maximizing abs. cap. at 100 cycles M4

4 1 1 Reference (Best Iter. 1) D4

4 1 0 Exploration N4

4 0 1 Exploration O4

4 1.85 1.1 Reference (Best Iter. 3) J4

Table 2. Selected additive combinations for experiment. Experiment with reference

or exploration as motivation were human selected, all other experiments were selected

by the algorithm.
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Bayesian optimization allowed optimizing the additives concentrations of

fluoroethylene carbonate (FEC) and vinylene carbonate (VC) in order to maximize

lifetime of a NMC-622/graphite lithium-ion battery. The electrolytes were evaluated

in-situ, in pouch cells. The investigation included a systematic analysis of optimization

target values and an evaluation of impact on lifetime performance of the additives.
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Figure A1. Confidence of different target variables in the search space, as returned

by the GP. It describes the confidence due to a-piori-knowledge before each of the four

proposed experiments. The x- and y-axis indicate the concentrations of the additives,

the color the estimated value of the target variable. The position of the training values

are indicated by blue crosses. The next experiment proposed by the algorithm is

indicated by a black cross.


