000910839 001__ 910839
000910839 005__ 20240712113117.0
000910839 0247_ $$2doi$$a10.1016/j.ensm.2021.10.023
000910839 0247_ $$2ISSN$$a2405-8289
000910839 0247_ $$2ISSN$$a2405-8297
000910839 0247_ $$2datacite_doi$$a10.34734/FZJ-2022-04189
000910839 0247_ $$2WOS$$aWOS:000778692600001
000910839 037__ $$aFZJ-2022-04189
000910839 082__ $$a624
000910839 1001_ $$0P:(DE-HGF)0$$aLi, Weihan$$b0$$eCorresponding author
000910839 245__ $$aData-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence
000910839 260__ $$aAmsterdam$$bElsevier$$c2022
000910839 3367_ $$2DRIVER$$aarticle
000910839 3367_ $$2DataCite$$aOutput Types/Journal article
000910839 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712825921_19457
000910839 3367_ $$2BibTeX$$aARTICLE
000910839 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910839 3367_ $$00$$2EndNote$$aJournal Article
000910839 520__ $$aElectrochemical models are more and more widely applied in battery diagnostics, prognostics and fast charging control, considering their high fidelity, high extrapolability and physical interpretability. However, parameter identification of electrochemical models is challenging due to the complicated model structure and a large number of physical parameters with different identifiability. The scope of this work is the development of a data-driven parameter identification framework for electrochemical models for lithium-ion batteries in real-world operations with artificial intelligence, i.e., the cuckoo search algorithm. Only current and voltage data are used as input for the multi-objective global optimization of the parameters considering both voltage error between the model and the battery and the relative capacity error between two electrodes. The multi-step identification process based on sensitivity analysis increases the identification accuracy of the parameters with low sensitivity. Moreover, the novel identification process inspired by the training process in machine learning further overcomes the overfitting problem using limited battery data. The data-driven approach achieves a maximum root mean square error of 9 mV and 12.7 mV for the full cell voltage under constant current discharging and real-world driving cycles, respectively, which is only 17.9% and 42.9% of that of the experimental identification approach.
000910839 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000910839 536__ $$0G:(EU-Grant)713771$$aEVERLASTING - Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery management (713771)$$c713771$$fH2020-GV-2015$$x1
000910839 536__ $$0G:(BMBF)03XP0334$$aBMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)$$c03XP0334$$x2
000910839 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910839 7001_ $$0P:(DE-HGF)0$$aDemir, Iskender$$b1
000910839 7001_ $$0P:(DE-HGF)0$$aCao, Decheng$$b2
000910839 7001_ $$0P:(DE-HGF)0$$aJöst, Dominik$$b3
000910839 7001_ $$0P:(DE-HGF)0$$aRingbeck, Florian$$b4
000910839 7001_ $$0P:(DE-HGF)0$$aJunker, Mark$$b5
000910839 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b6
000910839 773__ $$0PERI:(DE-600)2841602-8$$a10.1016/j.ensm.2021.10.023$$gVol. 44, p. 557 - 570$$p557 - 570$$tEnergy storage materials$$v44$$x2405-8289$$y2022
000910839 8564_ $$uhttps://juser.fz-juelich.de/record/910839/files/Data-driven%20systematic%20parameter%20identification%20of%20an%20electrochemical%20model%20for%20lithium-ion%20batteries%20with%20artificial%20intelligence.pdf$$yOpenAccess
000910839 8564_ $$uhttps://juser.fz-juelich.de/record/910839/files/Data-driven%20systematic%20parameter%20identification%20of%20an%20electrochemical%20model%20for%20lithium-ion%20batteries%20with%20artificial%20intelligence.gif?subformat=icon$$xicon$$yOpenAccess
000910839 8564_ $$uhttps://juser.fz-juelich.de/record/910839/files/Data-driven%20systematic%20parameter%20identification%20of%20an%20electrochemical%20model%20for%20lithium-ion%20batteries%20with%20artificial%20intelligence.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000910839 8564_ $$uhttps://juser.fz-juelich.de/record/910839/files/Data-driven%20systematic%20parameter%20identification%20of%20an%20electrochemical%20model%20for%20lithium-ion%20batteries%20with%20artificial%20intelligence.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000910839 8564_ $$uhttps://juser.fz-juelich.de/record/910839/files/Data-driven%20systematic%20parameter%20identification%20of%20an%20electrochemical%20model%20for%20lithium-ion%20batteries%20with%20artificial%20intelligence.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000910839 909CO $$ooai:juser.fz-juelich.de:910839$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000910839 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b6$$kFZJ
000910839 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000910839 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000910839 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910839 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bENERGY STORAGE MATER : 2019$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY STORAGE MATER : 2019$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910839 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910839 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000910839 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000910839 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000910839 9801_ $$aFullTexts
000910839 980__ $$ajournal
000910839 980__ $$aVDB
000910839 980__ $$aUNRESTRICTED
000910839 980__ $$aI:(DE-Juel1)IEK-12-20141217
000910839 980__ $$aI:(DE-82)080011_20140620
000910839 981__ $$aI:(DE-Juel1)IMD-4-20141217