000910841 001__ 910841
000910841 005__ 20240712113104.0
000910841 0247_ $$2doi$$a10.1016/j.est.2022.104257
000910841 0247_ $$2ISSN$$a2352-152X
000910841 0247_ $$2ISSN$$a2352-1538
000910841 0247_ $$2WOS$$aWOS:000780282700001
000910841 037__ $$aFZJ-2022-04191
000910841 082__ $$a333.7
000910841 1001_ $$0P:(DE-HGF)0$$aThien, Tjark$$b0$$eCorresponding author
000910841 245__ $$aEnergy management of stationary hybrid battery energy storage systems using the example of a real-world 5 MW hybrid battery storage project in Germany
000910841 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000910841 3367_ $$2DRIVER$$aarticle
000910841 3367_ $$2DataCite$$aOutput Types/Journal article
000910841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712828030_17869
000910841 3367_ $$2BibTeX$$aARTICLE
000910841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910841 3367_ $$00$$2EndNote$$aJournal Article
000910841 500__ $$aZudem unterstützt durch BMWi Grants: 03ESP265A (M5BAT)
000910841 520__ $$aUtility-scale Battery Energy Storage Systems (BESS) are becoming increasingly important for the transition to large shares of renewable energy sources in the electricity grid. Hybrid battery storage systems are an interesting option to increase the profitability of BESS by combining low-cost battery technologies with more expensive, but also more efficient and robust ones. In theory, such a hybrid system can be cheaper than a single-technology system by leveraging synergy effects while still satisfying the requirements of a given application. An energy management system, which allocates the setpoint power of the BESS to the individual battery technologies, is crucial for taking advantage of the hybrid system layout. This paper details an analysis of different energy management algorithms for hybrid BESS using the example of a real-world project called M5BAT and compares the latter to alternative BESS layouts. Besides two heuristic algorithms, a non-predictive optimization and a predictive optimization are developed. Models comprising the electrical, thermal and aging behavior of the considered BESS components are introduced. Simulations of the operation of the BESS providing frequency containment reserve are conducted for determining the operating costs. The performance of the algorithms is evaluated based on the simulation results. Comparing the results shows significant differences in the operating costs between the algorithms, especially when optimized to reduce operating costs. The economic advantage of hybrid BESS is validated by additional simulations of a virtual hybrid BESS and a virtual single-technology BESS. Although the layout has not been optimized in terms of individual sizing of the different battery technologies, the hybrid BESS show a considerable advantage over the single-technology BESS.
000910841 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000910841 536__ $$0G:(DE-82)BMBF-03EI4034$$aBMBF 03EI4034 - Einzelvorhaben: EMMUseBat - Entwicklung von Methoden für den Multi-Use-Betrieb von modularen Batteriegroßspeichern im Mittelspannungsnetz (BMBF-03EI4034)$$cBMBF-03EI4034$$x1
000910841 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910841 7001_ $$0P:(DE-HGF)0$$aAxelsen, Hendrik$$b1
000910841 7001_ $$00000-0002-3183-1363$$aMerten, Michael$$b2
000910841 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b3
000910841 773__ $$0PERI:(DE-600)2826805-2$$a10.1016/j.est.2022.104257$$gVol. 51, p. 104257 -$$p104257 -$$tJournal of energy storage$$v51$$x2352-152X$$y2022
000910841 8564_ $$uhttps://juser.fz-juelich.de/record/910841/files/Energy%20management%20of%20stationary%20hybrid%20battery%20energy%20storage%20systems%20using%20the%20example%20of%20a%20real-world%205MW%20hybrid%20battery%20storage%20project%20in%20Germany.pdf$$yRestricted
000910841 8564_ $$uhttps://juser.fz-juelich.de/record/910841/files/Energy%20management%20of%20stationary%20hybrid%20battery%20energy%20storage%20systems%20using%20the%20example%20of%20a%20real-world%205MW%20hybrid%20battery%20storage%20project%20in%20Germany.gif?subformat=icon$$xicon$$yRestricted
000910841 8564_ $$uhttps://juser.fz-juelich.de/record/910841/files/Energy%20management%20of%20stationary%20hybrid%20battery%20energy%20storage%20systems%20using%20the%20example%20of%20a%20real-world%205MW%20hybrid%20battery%20storage%20project%20in%20Germany.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000910841 8564_ $$uhttps://juser.fz-juelich.de/record/910841/files/Energy%20management%20of%20stationary%20hybrid%20battery%20energy%20storage%20systems%20using%20the%20example%20of%20a%20real-world%205MW%20hybrid%20battery%20storage%20project%20in%20Germany.jpg?subformat=icon-180$$xicon-180$$yRestricted
000910841 8564_ $$uhttps://juser.fz-juelich.de/record/910841/files/Energy%20management%20of%20stationary%20hybrid%20battery%20energy%20storage%20systems%20using%20the%20example%20of%20a%20real-world%205MW%20hybrid%20battery%20storage%20project%20in%20Germany.jpg?subformat=icon-640$$xicon-640$$yRestricted
000910841 909CO $$ooai:juser.fz-juelich.de:910841$$pVDB
000910841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b3$$kFZJ
000910841 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000910841 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENERGY STORAGE : 2019$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000910841 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000910841 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000910841 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000910841 980__ $$ajournal
000910841 980__ $$aVDB
000910841 980__ $$aI:(DE-Juel1)IEK-12-20141217
000910841 980__ $$aI:(DE-82)080011_20140620
000910841 980__ $$aUNRESTRICTED
000910841 981__ $$aI:(DE-Juel1)IMD-4-20141217