000910845 001__ 910845
000910845 005__ 20240712113118.0
000910845 0247_ $$2doi$$a10.1016/j.apenergy.2022.119060
000910845 0247_ $$2ISSN$$a0306-2619
000910845 0247_ $$2ISSN$$a1872-9118
000910845 0247_ $$2datacite_doi$$a10.34734/FZJ-2022-04195
000910845 0247_ $$2WOS$$aWOS:000799956300009
000910845 037__ $$aFZJ-2022-04195
000910845 082__ $$a620
000910845 1001_ $$00000-0003-2842-879X$$aRücker, Fabian$$b0$$eCorresponding author
000910845 245__ $$aSelf-sufficiency and charger constraints of prosumer households with vehicle-to-home strategies
000910845 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000910845 3367_ $$2DRIVER$$aarticle
000910845 3367_ $$2DataCite$$aOutput Types/Journal article
000910845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708525814_8381
000910845 3367_ $$2BibTeX$$aARTICLE
000910845 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910845 3367_ $$00$$2EndNote$$aJournal Article
000910845 520__ $$aIn recent years, the market of electric vehicles has been growing strongly. This growth is accompanied bydiscussions on vehicle-to-home strategies that allow households with a photovoltaic system and an electricvehicle both to charge the vehicle with solar energy and to supply energy from the vehicle to the household.However, vehicle-to-home technology is still not yet widely implemented in prosumer households and thereis still little literature about the impact of technological constraints given by the hardware and chargingprotocols on prosumer energy consumption. To close this research gap, we develop heuristic vehicle-to-homecharging strategies that aim to increase self-sufficiency, vehicle availability and traction battery lifetime. Wediscuss charging power constraints due to technical limitations measured in the laboratory and communicationprotocols. We investigate the impact of charging power constraints, bidirectional charger capability andforecasting algorithms on the self-sufficiency of the prosumer household. The simulation model integrates acomprehensive electric vehicle model, photovoltaic system model and historic measurement data of prosumerand driving profiles. We propose and simulate three different exemplary mobility profile scenarios. Themobility scenarios differ in their departure and arrival time distributions and are named Worker, Half-timeWorker and Late Worker. The developed smart charging strategies can increase the self-sufficiency of thehousehold by up to 16.9 percentage points in comparison to charging the vehicle with maximum power uponplug-in. Decreasing the minimum charging power constraint from 4.1 kW to 1.8 kW can increase self-sufficiencyby up to 10.5 percentage points. Smart charging strategies, the use of a bidirectional charger, relaxation ofcharging power constraints and the use of forecasting algorithms increase the self-sufficiency of a prosumerhousehold with a photovoltaic system and an electric vehicle.
000910845 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000910845 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910845 7001_ $$00000-0003-1205-3049$$aSchoeneberger, Ilka$$b1
000910845 7001_ $$0P:(DE-HGF)0$$aWilmschen, Till$$b2
000910845 7001_ $$00000-0001-5300-859X$$aSperling, Dustin$$b3
000910845 7001_ $$0P:(DE-HGF)0$$aHaberschusz, David$$b4
000910845 7001_ $$00000-0003-2216-9432$$aFiggener, Jan$$b5
000910845 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b6
000910845 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2022.119060$$gVol. 317, p. 119060 -$$p119060$$tApplied energy$$v317$$x0306-2619$$y2022
000910845 8564_ $$uhttps://juser.fz-juelich.de/record/910845/files/Ruecker%20et%20al.%20-%20Self-sufficiency%20and%20charger%20constraints%20of%20prosumer%20households%20with%20vehicle-to-home%20strategies.pdf$$yOpenAccess
000910845 8564_ $$uhttps://juser.fz-juelich.de/record/910845/files/Ruecker%20et%20al.%20-%20Self-sufficiency%20and%20charger%20constraints%20of%20prosumer%20households%20with%20vehicle-to-home%20strategies.gif?subformat=icon$$xicon$$yOpenAccess
000910845 8564_ $$uhttps://juser.fz-juelich.de/record/910845/files/Ruecker%20et%20al.%20-%20Self-sufficiency%20and%20charger%20constraints%20of%20prosumer%20households%20with%20vehicle-to-home%20strategies.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000910845 8564_ $$uhttps://juser.fz-juelich.de/record/910845/files/Ruecker%20et%20al.%20-%20Self-sufficiency%20and%20charger%20constraints%20of%20prosumer%20households%20with%20vehicle-to-home%20strategies.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000910845 8564_ $$uhttps://juser.fz-juelich.de/record/910845/files/Ruecker%20et%20al.%20-%20Self-sufficiency%20and%20charger%20constraints%20of%20prosumer%20households%20with%20vehicle-to-home%20strategies.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000910845 909CO $$ooai:juser.fz-juelich.de:910845$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b6$$kFZJ
000910845 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000910845 9141_ $$y2023
000910845 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2019$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910845 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2019$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000910845 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000910845 920__ $$lyes
000910845 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000910845 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000910845 9801_ $$aFullTexts
000910845 980__ $$ajournal
000910845 980__ $$aVDB
000910845 980__ $$aI:(DE-Juel1)IEK-12-20141217
000910845 980__ $$aI:(DE-82)080011_20140620
000910845 980__ $$aUNRESTRICTED
000910845 981__ $$aI:(DE-Juel1)IMD-4-20141217