000910864 001__ 910864
000910864 005__ 20230123110720.0
000910864 0247_ $$2doi$$a10.1002/adom.202200522
000910864 0247_ $$2Handle$$a2128/33396
000910864 0247_ $$2WOS$$aWOS:000832655300001
000910864 037__ $$aFZJ-2022-04214
000910864 041__ $$aEnglish
000910864 082__ $$a670
000910864 1001_ $$00000-0002-6736-3995$$aLiao, Liping$$b0$$eCorresponding author
000910864 245__ $$aUnraveling the Mechanism of the Persistent Photoconductivity in InSe and its Doped Counterparts
000910864 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910864 3367_ $$2DRIVER$$aarticle
000910864 3367_ $$2DataCite$$aOutput Types/Journal article
000910864 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672918481_7620
000910864 3367_ $$2BibTeX$$aARTICLE
000910864 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910864 3367_ $$00$$2EndNote$$aJournal Article
000910864 520__ $$aDopant levels in layered compound InSe have considerable potential in optoelectronic devices. Dopant-induced trap states are essential in determining the optoelectrical properties of semiconductors. However, detailed studies of the persistent photoconductivity (PPC) and related mechanism in doped InSe are still not available. Here, the dependence of excitation energy on the shallow donor level caused by the dopants (Ge, Sn) in InSe is systematically investigated. Notably, prolonged decay time originates from extrinsic Ge, Sn dopants and these doping-assisted states improve the optoelectrical performance of pristine InSe. Those photogenerated carriers are trapped in the Ge, Sn shallow impurities states, which are long-lived enough to be extracted into Au contacts before annihilation. This renders Ge-, Sn-doped InSe photoconductive gain and maximized photocurrent. Sn-doped InSe single crystal device can achieve a maximum responsivity of around 1.7 × 106 A W−1 under red light and detectivity of 6.18 × 1013 Jones. In addition, Hall measurements identify the carrier concentration and the Hall mobility of pristine InSe is significantly changed by Ge and Sn dopants. It is demonstrated that doping Ge, Sn atoms is responsible for the obvious photoconductivity and beneficial for the high-performance photodetector, offering intriguing opportunities for novel holographic memory applications.
000910864 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000910864 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910864 7001_ $$00000-0002-8996-0790$$aKovalska, Evgeniya$$b1
000910864 7001_ $$00000-0001-9076-5389$$aLuxa, Jan$$b2
000910864 7001_ $$00000-0003-4382-1303$$aDekanovsky, Lukáš$$b3
000910864 7001_ $$00000-0002-8524-3364$$aMazanek, Vlastimil$$b4
000910864 7001_ $$00000-0001-8894-5495$$aValdman, Lukáš$$b5
000910864 7001_ $$00000-0002-9637-6787$$aWu, Bing$$b6
000910864 7001_ $$00000-0001-7909-9864$$aHuber, Štěpán$$b7
000910864 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b8
000910864 7001_ $$00000-0002-1391-4448$$aSofer, Zdenek$$b9$$eCorresponding author
000910864 773__ $$0PERI:(DE-600)2708158-8$$a10.1002/adom.202200522$$gVol. 10, no. 20, p. 2200522 -$$n20$$p2200522 -$$tAdvanced optical materials$$v10$$x2195-1071$$y2022
000910864 8564_ $$uhttps://juser.fz-juelich.de/record/910864/files/Advanced%20Optical%20Materials%20-%202022%20-%20Liao%20-%20Unraveling%20the%20Mechanism%20of%20the%20Persistent%20Photoconductivity%20in%20InSe%20and%20its.pdf
000910864 8564_ $$uhttps://juser.fz-juelich.de/record/910864/files/Liao%20et%20al_submitted%20file_Unraveling%20the%20Mechanism%20of%20the%20Persistent%20Photoconductivity%20in%20InSe%20and%20its%20Doped%20Counterparts_Advanced%20Optical%20Materials_2022.pdf$$yPublished on 2022-07-29. Available in OpenAccess from 2023-07-29.
000910864 909CO $$ooai:juser.fz-juelich.de:910864$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910864 9101_ $$0I:(DE-HGF)0$$60000-0002-8996-0790$$aExternal Institute$$b1$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0001-9076-5389$$aExternal Institute$$b2$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0003-4382-1303$$aExternal Institute$$b3$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0002-8524-3364$$aExternal Institute$$b4$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0001-8894-5495$$aExternal Institute$$b5$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0002-9637-6787$$aExternal Institute$$b6$$kExtern
000910864 9101_ $$0I:(DE-HGF)0$$60000-0001-7909-9864$$aExternal Institute$$b7$$kExtern
000910864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b8$$kFZJ
000910864 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000910864 9141_ $$y2022
000910864 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910864 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910864 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000910864 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910864 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV OPT MATER : 2021$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-10
000910864 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV OPT MATER : 2021$$d2022-11-10
000910864 920__ $$lyes
000910864 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000910864 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000910864 980__ $$ajournal
000910864 980__ $$aVDB
000910864 980__ $$aUNRESTRICTED
000910864 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000910864 980__ $$aI:(DE-82)080009_20140620
000910864 9801_ $$aFullTexts