000910865 001__ 910865
000910865 005__ 20230123110720.0
000910865 0247_ $$2doi$$a10.1002/adom.202201024
000910865 0247_ $$2Handle$$a2128/32872
000910865 0247_ $$2WOS$$aWOS:000842331600001
000910865 037__ $$aFZJ-2022-04215
000910865 082__ $$a670
000910865 1001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b0$$eCorresponding author
000910865 245__ $$aRoom Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering
000910865 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910865 3367_ $$2DRIVER$$aarticle
000910865 3367_ $$2DataCite$$aOutput Types/Journal article
000910865 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669715406_12116
000910865 3367_ $$2BibTeX$$aARTICLE
000910865 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910865 3367_ $$00$$2EndNote$$aJournal Article
000910865 520__ $$aThe success of GeSn alloys as active material for infrared lasers could pave the way toward a monolithic technology that can be manufactured within mainstream silicon photonics. Nonetheless, for operation on chip, lasing should occur at room temperature or beyond. Unfortunately, despite the intense research in recent years, many hurdles have yet to be overcome. An approach exploiting strain engineering to induce large tensile strain in micro-disk made of GeSn alloy with Sn content of 14 at% is presented here. This method enables robust multimode laser emission at room temperature. Furthermore, tensile strain enables proper valence band engineering; as a result, over a large range of operating temperatures, lower lasing thresholds are observed compared to high Sn content GeSn lasers operating at similar wavelength.
000910865 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910865 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910865 7001_ $$0P:(DE-HGF)0$$aBjelajac, Andjelika$$b1
000910865 7001_ $$0P:(DE-HGF)0$$aSpirito, Davide$$b2
000910865 7001_ $$0P:(DE-HGF)0$$aConcepción, Omar$$b3
000910865 7001_ $$0P:(DE-HGF)0$$aGromovyi, Maksym$$b4
000910865 7001_ $$0P:(DE-HGF)0$$aSakat, Emilie$$b5
000910865 7001_ $$0P:(DE-HGF)0$$aLafosse, Xavier$$b6
000910865 7001_ $$0P:(DE-HGF)0$$aFerlazzo, Laurence$$b7
000910865 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b8
000910865 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b9
000910865 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10
000910865 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b11
000910865 7001_ $$0P:(DE-HGF)0$$aEl Kurdi, Moustafa$$b12
000910865 773__ $$0PERI:(DE-600)2708158-8$$a10.1002/adom.202201024$$gp. 2201024 -$$n22$$p2201024 -$$tAdvanced optical materials$$v10$$x2195-1071$$y2022
000910865 8564_ $$uhttps://juser.fz-juelich.de/record/910865/files/Advanced%20Optical%20Materials%20-%202022%20-%20Buca%20-%20Room%20Temperature%20Lasing%20in%20GeSn%20Microdisks%20Enabled%20by%20Strain%20Engineering.pdf$$yOpenAccess
000910865 909CO $$ooai:juser.fz-juelich.de:910865$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b0$$kFZJ
000910865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000910865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b8$$kFZJ
000910865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ
000910865 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910865 9141_ $$y2022
000910865 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910865 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000910865 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910865 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000910865 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910865 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV OPT MATER : 2021$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-10
000910865 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV OPT MATER : 2021$$d2022-11-10
000910865 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000910865 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000910865 980__ $$ajournal
000910865 980__ $$aVDB
000910865 980__ $$aUNRESTRICTED
000910865 980__ $$aI:(DE-Juel1)PGI-9-20110106
000910865 980__ $$aI:(DE-82)080009_20140620
000910865 9801_ $$aFullTexts