001     910865
005     20230123110720.0
024 7 _ |a 10.1002/adom.202201024
|2 doi
024 7 _ |a 2128/32872
|2 Handle
024 7 _ |a WOS:000842331600001
|2 WOS
037 _ _ |a FZJ-2022-04215
082 _ _ |a 670
100 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 0
|e Corresponding author
245 _ _ |a Room Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669715406_12116
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The success of GeSn alloys as active material for infrared lasers could pave the way toward a monolithic technology that can be manufactured within mainstream silicon photonics. Nonetheless, for operation on chip, lasing should occur at room temperature or beyond. Unfortunately, despite the intense research in recent years, many hurdles have yet to be overcome. An approach exploiting strain engineering to induce large tensile strain in micro-disk made of GeSn alloy with Sn content of 14 at% is presented here. This method enables robust multimode laser emission at room temperature. Furthermore, tensile strain enables proper valence band engineering; as a result, over a large range of operating temperatures, lower lasing thresholds are observed compared to high Sn content GeSn lasers operating at similar wavelength.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bjelajac, Andjelika
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Spirito, Davide
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Concepción, Omar
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gromovyi, Maksym
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sakat, Emilie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lafosse, Xavier
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ferlazzo, Laurence
|0 P:(DE-HGF)0
|b 7
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 8
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 11
700 1 _ |a El Kurdi, Moustafa
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1002/adom.202201024
|g p. 2201024 -
|0 PERI:(DE-600)2708158-8
|n 22
|p 2201024 -
|t Advanced optical materials
|v 10
|y 2022
|x 2195-1071
856 4 _ |u https://juser.fz-juelich.de/record/910865/files/Advanced%20Optical%20Materials%20-%202022%20-%20Buca%20-%20Room%20Temperature%20Lasing%20in%20GeSn%20Microdisks%20Enabled%20by%20Strain%20Engineering.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910865
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV OPT MATER : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV OPT MATER : 2021
|d 2022-11-10
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21