| Home > Publications database > Room Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering > print |
| 001 | 910865 | ||
| 005 | 20230123110720.0 | ||
| 024 | 7 | _ | |a 10.1002/adom.202201024 |2 doi |
| 024 | 7 | _ | |a 2128/32872 |2 Handle |
| 024 | 7 | _ | |a WOS:000842331600001 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-04215 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |a Buca, Dan |0 P:(DE-Juel1)125569 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Room Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering |
| 260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669715406_12116 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The success of GeSn alloys as active material for infrared lasers could pave the way toward a monolithic technology that can be manufactured within mainstream silicon photonics. Nonetheless, for operation on chip, lasing should occur at room temperature or beyond. Unfortunately, despite the intense research in recent years, many hurdles have yet to be overcome. An approach exploiting strain engineering to induce large tensile strain in micro-disk made of GeSn alloy with Sn content of 14 at% is presented here. This method enables robust multimode laser emission at room temperature. Furthermore, tensile strain enables proper valence band engineering; as a result, over a large range of operating temperatures, lower lasing thresholds are observed compared to high Sn content GeSn lasers operating at similar wavelength. |
| 536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Bjelajac, Andjelika |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Spirito, Davide |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Concepción, Omar |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Gromovyi, Maksym |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Sakat, Emilie |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Lafosse, Xavier |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Ferlazzo, Laurence |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a von den Driesch, Nils |0 P:(DE-Juel1)161247 |b 8 |
| 700 | 1 | _ | |a Ikonic, Zoran |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 10 |
| 700 | 1 | _ | |a Capellini, Giovanni |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a El Kurdi, Moustafa |0 P:(DE-HGF)0 |b 12 |
| 773 | _ | _ | |a 10.1002/adom.202201024 |g p. 2201024 - |0 PERI:(DE-600)2708158-8 |n 22 |p 2201024 - |t Advanced optical materials |v 10 |y 2022 |x 2195-1071 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/910865/files/Advanced%20Optical%20Materials%20-%202022%20-%20Buca%20-%20Room%20Temperature%20Lasing%20in%20GeSn%20Microdisks%20Enabled%20by%20Strain%20Engineering.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:910865 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)125569 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)161247 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)125588 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-02 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV OPT MATER : 2021 |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-10 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-10 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ADV OPT MATER : 2021 |d 2022-11-10 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|