000910866 001__ 910866
000910866 005__ 20230303091807.0
000910866 0247_ $$2doi$$a10.1038/s43246-022-00275-x
000910866 0247_ $$2Handle$$a2128/33484
000910866 0247_ $$2WOS$$aWOS:000844772400001
000910866 037__ $$aFZJ-2022-04216
000910866 082__ $$a600
000910866 1001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b0$$eCorresponding author
000910866 245__ $$aDisentangling the electronic structure of an adsorbed graphene nanoring by scanning tunneling microscopy
000910866 260__ $$aLondon$$bSpringer Nature$$c2022
000910866 3367_ $$2DRIVER$$aarticle
000910866 3367_ $$2DataCite$$aOutput Types/Journal article
000910866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673437199_25243
000910866 3367_ $$2BibTeX$$aARTICLE
000910866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910866 3367_ $$00$$2EndNote$$aJournal Article
000910866 520__ $$aGraphene nanorings are promising model structures to realize persistent ring currents and Aharonov–Bohm effect at the single molecular level. To investigate such intriguing effects, precise molecular characterization is crucial. Here, we combine low-temperature scanning tunneling imaging and spectroscopy with CO functionalized tips and algorithmic data analysis to investigate the electronic structure of the molecular cycloarene C108 (graphene nanoring) adsorbed on a Au(111) surface. We demonstrate that CO functionalized tips enhance the visibility of molecular resonances, both in differential conductance spectra and in real-space topographic images. Comparing our experimental data with ab-initio density functional theory reveals a remarkably precise agreement of the molecular orbitals and enables us to disentangle close-lying molecular states only separated by 50 meV at an energy of 2 eV below the Fermi level. We propose this combination of techniques as a promising new route for a precise electronic characterization of complex molecules and other physical properties which have electronic resonances in the tip-sample junction.
000910866 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910866 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910866 7001_ $$aBolat, Rustem$$b1
000910866 7001_ $$aFan, Qitang$$b2
000910866 7001_ $$aWerner, Simon$$b3
000910866 7001_ $$0P:(DE-Juel1)176199$$aArefi, Hadi H.$$b4$$ufzj
000910866 7001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b5$$ufzj
000910866 7001_ $$0P:(DE-HGF)0$$aSundermeyer, Jörg$$b6
000910866 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b7
000910866 7001_ $$0P:(DE-HGF)0$$aMichael Gottfried, J.$$b8
000910866 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b9
000910866 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b10
000910866 7001_ $$0P:(DE-Juel1)128791$$aStefan Tautz, F.$$b11
000910866 773__ $$0PERI:(DE-600)3008524-X$$a10.1038/s43246-022-00275-x$$gVol. 3, no. 1, p. 57$$n1$$p57$$tCommunications materials$$v3$$x2662-4443$$y2022
000910866 8564_ $$uhttps://juser.fz-juelich.de/record/910866/files/1200186598_MPDL_Rechnung.pdf
000910866 8564_ $$uhttps://juser.fz-juelich.de/record/910866/files/s43246-022-00275-x.pdf$$yOpenAccess
000910866 8767_ $$8SN-2022-00657-b$$92022-11-28$$a1200186598$$d2022-12-06$$eAPC$$jZahlung erfolgt
000910866 909CO $$ooai:juser.fz-juelich.de:910866$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176199$$aForschungszentrum Jülich$$b4$$kFZJ
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b5$$kFZJ
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b7$$kFZJ
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b9$$kFZJ
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b10$$kFZJ
000910866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b11$$kFZJ
000910866 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910866 9141_ $$y2022
000910866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910866 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000910866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000910866 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:56:19Z
000910866 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:56:19Z
000910866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T14:56:19Z
000910866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000910866 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-15
000910866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000910866 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910866 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000910866 920__ $$lyes
000910866 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000910866 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000910866 980__ $$ajournal
000910866 980__ $$aVDB
000910866 980__ $$aUNRESTRICTED
000910866 980__ $$aI:(DE-Juel1)PGI-3-20110106
000910866 980__ $$aI:(DE-82)080009_20140620
000910866 980__ $$aAPC
000910866 9801_ $$aAPC
000910866 9801_ $$aFullTexts