001     910866
005     20230303091807.0
024 7 _ |a 10.1038/s43246-022-00275-x
|2 doi
024 7 _ |a 2128/33484
|2 Handle
024 7 _ |a WOS:000844772400001
|2 WOS
037 _ _ |a FZJ-2022-04216
082 _ _ |a 600
100 1 _ |a Martinez-Castro, Jose
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Disentangling the electronic structure of an adsorbed graphene nanoring by scanning tunneling microscopy
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673437199_25243
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Graphene nanorings are promising model structures to realize persistent ring currents and Aharonov–Bohm effect at the single molecular level. To investigate such intriguing effects, precise molecular characterization is crucial. Here, we combine low-temperature scanning tunneling imaging and spectroscopy with CO functionalized tips and algorithmic data analysis to investigate the electronic structure of the molecular cycloarene C108 (graphene nanoring) adsorbed on a Au(111) surface. We demonstrate that CO functionalized tips enhance the visibility of molecular resonances, both in differential conductance spectra and in real-space topographic images. Comparing our experimental data with ab-initio density functional theory reveals a remarkably precise agreement of the molecular orbitals and enables us to disentangle close-lying molecular states only separated by 50 meV at an energy of 2 eV below the Fermi level. We propose this combination of techniques as a promising new route for a precise electronic characterization of complex molecules and other physical properties which have electronic resonances in the tip-sample junction.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bolat, Rustem
|b 1
700 1 _ |a Fan, Qitang
|b 2
700 1 _ |a Werner, Simon
|b 3
700 1 _ |a Arefi, Hadi H.
|0 P:(DE-Juel1)176199
|b 4
|u fzj
700 1 _ |a Esat, Taner
|0 P:(DE-Juel1)180950
|b 5
|u fzj
700 1 _ |a Sundermeyer, Jörg
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 7
700 1 _ |a Michael Gottfried, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Temirov, Ruslan
|0 P:(DE-Juel1)128792
|b 9
700 1 _ |a Ternes, Markus
|0 P:(DE-Juel1)174438
|b 10
700 1 _ |a Stefan Tautz, F.
|0 P:(DE-Juel1)128791
|b 11
773 _ _ |a 10.1038/s43246-022-00275-x
|g Vol. 3, no. 1, p. 57
|0 PERI:(DE-600)3008524-X
|n 1
|p 57
|t Communications materials
|v 3
|y 2022
|x 2662-4443
856 4 _ |u https://juser.fz-juelich.de/record/910866/files/1200186598_MPDL_Rechnung.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910866/files/s43246-022-00275-x.pdf
909 C O |o oai:juser.fz-juelich.de:910866
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)140276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)174438
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:56:19Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:56:19Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:56:19Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21