Home > Publications database > Disentangling the electronic structure of an adsorbed graphene nanoring by scanning tunneling microscopy > print |
001 | 910866 | ||
005 | 20230303091807.0 | ||
024 | 7 | _ | |a 10.1038/s43246-022-00275-x |2 doi |
024 | 7 | _ | |a 2128/33484 |2 Handle |
024 | 7 | _ | |a WOS:000844772400001 |2 WOS |
037 | _ | _ | |a FZJ-2022-04216 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Martinez-Castro, Jose |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Disentangling the electronic structure of an adsorbed graphene nanoring by scanning tunneling microscopy |
260 | _ | _ | |a London |c 2022 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673437199_25243 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Graphene nanorings are promising model structures to realize persistent ring currents and Aharonov–Bohm effect at the single molecular level. To investigate such intriguing effects, precise molecular characterization is crucial. Here, we combine low-temperature scanning tunneling imaging and spectroscopy with CO functionalized tips and algorithmic data analysis to investigate the electronic structure of the molecular cycloarene C108 (graphene nanoring) adsorbed on a Au(111) surface. We demonstrate that CO functionalized tips enhance the visibility of molecular resonances, both in differential conductance spectra and in real-space topographic images. Comparing our experimental data with ab-initio density functional theory reveals a remarkably precise agreement of the molecular orbitals and enables us to disentangle close-lying molecular states only separated by 50 meV at an energy of 2 eV below the Fermi level. We propose this combination of techniques as a promising new route for a precise electronic characterization of complex molecules and other physical properties which have electronic resonances in the tip-sample junction. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bolat, Rustem |b 1 |
700 | 1 | _ | |a Fan, Qitang |b 2 |
700 | 1 | _ | |a Werner, Simon |b 3 |
700 | 1 | _ | |a Arefi, Hadi H. |0 P:(DE-Juel1)176199 |b 4 |u fzj |
700 | 1 | _ | |a Esat, Taner |0 P:(DE-Juel1)180950 |b 5 |u fzj |
700 | 1 | _ | |a Sundermeyer, Jörg |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Wagner, Christian |0 P:(DE-Juel1)140276 |b 7 |
700 | 1 | _ | |a Michael Gottfried, J. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Temirov, Ruslan |0 P:(DE-Juel1)128792 |b 9 |
700 | 1 | _ | |a Ternes, Markus |0 P:(DE-Juel1)174438 |b 10 |
700 | 1 | _ | |a Stefan Tautz, F. |0 P:(DE-Juel1)128791 |b 11 |
773 | _ | _ | |a 10.1038/s43246-022-00275-x |g Vol. 3, no. 1, p. 57 |0 PERI:(DE-600)3008524-X |n 1 |p 57 |t Communications materials |v 3 |y 2022 |x 2662-4443 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910866/files/1200186598_MPDL_Rechnung.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/910866/files/s43246-022-00275-x.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:910866 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)176199 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)180950 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)140276 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)174438 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128791 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:56:19Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:56:19Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-10-13T14:56:19Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-15 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|