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Quantum computers can be protected from noise by encoding the logical quantum information
redundantly into multiple qubits using error correcting codes. When manipulating the logical quan-
tum states, it is imperative that errors caused by imperfect operations do not spread uncontrollably
through the quantum register. This requires that all operations on the quantum register obey a
fault-tolerant circuit design which, in general, increases the complexity of the implementation. Here,
we demonstrate a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum
computer. In particular, we make use of the recently introduced paradigm of flag fault tolerance,
where the absence or presence of dangerous errors is heralded by usage of few ancillary ’flag’ qubits.
We perform a logical two-qubit CNOT-gate between two instances of the seven qubit color code, and
we also fault-tolerantly prepare a logical magic state. We then realize a fault-tolerant logical T-gate
by injecting the magic state via teleportation from one logical qubit onto the other. We observe the
hallmark feature of fault tolerance, a superior performance compared to a non-fault-tolerant imple-
mentation. In combination with recently demonstrated repeated quantum error correction cycles
these results open the door to error-corrected universal quantum computation.

I. INTRODUCTION

Quantum computers promise to efficiently solve impor-
tant computational tasks that are beyond the capabilities
of classical computers, such as prime factorization or the
simulation of complex quantum systems [1, 2]. A digital
quantum computer will offer a native gate set, which is
comprised of the operations that can be physically ex-
ecuted in hardware. Remarkably, finite sets of native
gates are sufficient to compose any operation to an arbi-
trary desired precision, rendering such gate sets univer-
sal [3]. A fundamental challenge is to keep the quantum
computation coherent, while all components of the quan-
tum computer such as physical qubits, gate operations
and measurements are inherently prone to errors. This
roadblock towards large-scale quantum computation can
be lifted with the tools of quantum fault tolerance [4–
7]. The central idea is to use quantum error correction
(QEC) codes, where many physical qubits together com-
prise so-called logical qubits such that the logical infor-
mation is distributed non-locally and thereby protected
from decoherence and errors due to finite control ac-
curacy. By ingenuity of code design, it thus becomes
possible to suppress logical decoherence arbitrarily by
adding redundancy, once the physical noise level falls be-
low some threshold [8]. Arbitrary logical quantum com-
putation demands that a universal logical gate set has to
be synthesized from physical gates, which presents new
challenges: to prevent previously localized errors from
spreading over the entire qubit register and destroying
the computation, logical gates have to be designed with
fault tolerance guarantees: For QEC codes with the po-

tential to correct at least one arbitrary single error, this
means that a single error occurring at any location (ini-
tialization, gate or measurement) in a particular circuit
may under no circumstances turn into a non-correctable
error on two or more qubits. When assuming for sim-
plicity that every location has some error probability p,
the logical failure rate without fault tolerance will scale
as pL ∝ Np with N the number of error locations in the
circuit that lead to a logical error. While adding further
gates and qubits for fault tolerance increases the number
of circuit locations, the logical failure rate will now scale
with pL ∝ N ′p2, i.e. it is quadratically suppressed in p,
where N ′ now denotes the number of pairs of locations
where two errors lead to a logical error. This entails one
of the hallmark features of fault-tolerant (FT) implemen-
tations: despite adding more (noisy) qubit and gates, the
quality of the encoded information can be improved, if
the physical noise level is sufficiently low. Certain QEC
codes facilitate a fault-tolerant implementation of some
gates by acting on all physical qubits individually – called
a transversal logical gate. However, a universal gate set
with all gates having a transversal unitary implementa-
tion is forbidden by a no-go theorem [9]. This leads to
the difficulty that to reach universal fault-tolerant com-
putation at least one logical gate must be implemented
by other means, such as magic state injection [10] or code
switching [11]. Fulfilling fault tolerance requirements for
these approaches typically implies a substantial resource
overhead [12].

The growing experimental effort towards fault-tolerant
quantum computation has seen tremendous advances:
Non-fault-tolerant logical state preparation and transver-
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FIG. 1. QEC code, logical gates and experimental sys-
tem. (a) Seven-qubit color code encoding one logical qubit in

seven physical qubits. The six weight-4 operators {S(i)
x , S

(i)
z },

i = 1, 2, 3, are the stabilizer generators and the weight-7 op-
erators are logical operators ZL and XL. (b) Universal gate
set consisting of Clifford gates (above dashed line) and the
T-gate. Whereas the Clifford group is transversal in the color
code, magic state injection can be used to realize the fault-
tolerant T-gate. The magic state |H〉L is prepared fault-
tolerantly and subsequently teleported onto the target qubit
in an arbitrary state |Ψ〉L, effectively implementing a T-gate
on the target qubit. (c) Schematic 3D model of the ion-trap
quantum processor. Single and any pair i, j of ions can be
addressed simultaneously by steerable tightly focused laser
beams. This enables entangling (darker shaded beams) but
also single-qubit (lighter) gates.

sal single-qubit logical gate operations were shown in a
seven qubit experiment with trapped ions [13]. State
preparation of a topological surface code state [14], repet-
itive stabilizer measurements in an error-detecting sur-
face code [15, 16] and exponential error suppression in
a repetition code [17] have been demonstrated in super-
conducting architectures. Shortly following a theory pro-
posal towards demonstrations of fault tolerance in small
systems [18], experiments showed state preparation using

error detection codes and post-selection [19–21], and re-
cently error correction for fault-tolerant state preparation
and a fault-tolerant logical single-qubit Clifford gate [22].
Theory works have substantially reduced the resource re-
quirements for fault tolerance by the concept of flag fault
tolerance [23–27]. Here, dedicated auxiliary qubits are
introduced, which signal the presence of dangerous er-
rors. This concept was used to demonstrate fault-tolerant
operation of the five-qubit code in an NV center-based
quantum processor [28], and fault-tolerant parity check
measurements [29] and repetitive rounds of fault-tolerant
QEC cycles [30] with trapped ions. In the present work,
alongside the operation of single-qubit logical Clifford
gates, we demonstrate the fault-tolerant implementation
of a logical CNOT-gate between two logical color code
qubits, thereby realizing the entire Clifford group fault-
tolerantly. Since this is all one can hope for regarding
transversal implementations, to obtain the non-Clifford
gate required for universality, we amend the gate set by
a T-gate. For this, in a first step we prepare a magic
state fault-tolerantly by the use of flag qubits, as pro-
posed in [25]. Finally, using this fault-tolerantly prepared
magic state and the transversal logical CNOT-gate, we
perform fault-tolerant magic state injection, thus demon-
strating a universal fault-tolerant gate set.

Matching experimental capabilities on the one hand
with fault tolerance requirements on the other hand
makes the seven-qubit color code an attractive candidate
system for the FT operation of a logical qubit. This
QEC code, illustrated in Fig. 1a, is the smallest mem-
ber of the code family of topological 2D color codes [31]
and is also known as the Steane code [32]. It hosts one
logical qubit and can be formulated as a stabilizer code
on seven physical qubits, with logical states encoded in
the joint +1-eigenspace of six weight-4 Pauli operators.
The logical operators are XL = X⊗7 and ZL = Z⊗7,
which are stabilizer-equivalent to weight three operators,
e.g. ZL ' Z1Z2Z3, rendering it a distance 3 code. This
entails that all single-qubit errors can be corrected, but
weight-2 errors on the code will lead to logical failures.
Besides a transversal CNOT-gate, which is common to all
QEC codes of the CSS (Calderbank-Shor-Steane) code
family, remarkably it also admits the transversal imple-
mentation of the Hadamard gate H and the phase gate
S. Consequently the entire Clifford group can be im-
plemented transversally (see Fig. 1b) [3]. The required
magic resource state to enable T-gate injection can be
prepared fault-tolerantly thanks to a recently proposed
protocol [25].

The experiments presented in this work have been per-
formed in a 16-qubit ion-trap quantum information pro-
cessor [33] shown schematically in Fig. 1c. The native
gate set supported by this architecture is composed of
entangling Mølmer-Sørensen operations [34] effectively
implementing XX-rotations with an error rate of p2 =
2.5 × 10−2, single-qubit rotations around an arbitrary
axis in the equatorial plane of the Bloch sphere with an
error rate of p1 = 5 × 10−3 and Z-rotations in software.
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Error rates for state initialization and measurement are
estimated at pi, pm = 3× 10−3. A more detailed discus-
sion on experimental methods can be found in Sec. VI.
For better readability, all circuits shown in this work are
provided in standard CNOT-gates, as these are equiv-
alent to XX-gates up to local Clifford operations [35].
Experimental results are accompanied by Monte Carlo
simulations, for which we model imperfections as uni-
form depolarizing noise on single-qubit gates, initializa-
tion and measurement as well as two-qubit gates with
independent physical error rates p1, pi, pm, p2, respec-
tively, as described in Sec. VII.

II. INITIALIZING AND CHARACTERIZING
THE LOGICAL QUBIT

We start by experimentally preparing the logical state
|0〉L as the +1-eigenstate of the logical Z-operator ZL by
implementing the circuit shown in Fig. 2a. The first part
of the circuit encodes a logical qubit in a non-FT fashion:
A single error, e.g. a bit flip on qubit 1, can propagate to
other qubits, here qubit 3, resulting in an uncorrectable
weight-2 error and therefore causing a logical error. To
render this encoding circuit fault-tolerant, a verification
step is added (see Fig. 2a) [36, 37]. An additional ancilla
qubit is used to herald a successful logical qubit initializa-
tion, meaning that for an ancilla measurement outcome
of +1 no single error anywhere in the encoding circuit
can have led to uncorrectable errors on the data qubit
register. This flag qubit will be triggered by any poten-
tially detrimental error, as illustrated for the weight two
error on qubits 1 and 3. For a measurement outcome
of −1 of the flag qubit the initialization is aborted and
repeated.

We analyze the quality of the information encoded in a
logical qubit in terms of logical operator expectation val-
ues. After a projective measurement, the outcome of the
logical operators is corrected according to the measured
error syndrome, effectively performing a Pauli frame up-
date [38, 39] described in Sec. VIII A. The updated mea-
surement outcomes are categorized by different error pat-
terns: (i) The outcome of all three measured stabilizer
generators is +1, meaning that the error syndrome is
trivial, and the logical operator exhibits the expected
outcome. (ii) After the correction suggested by the non-
trivial syndrome, the expected logical state is recovered.
This case corresponds to a single correctable error. (iii)
The syndrome is again non-trivial, but after error cor-
rection the logical state is flipped, indicating an uncor-
rectable error. (iv) The logical state is flipped despite the
syndrome being trivial, meaning a logical error occurred
directly. These categories correspond to states that have
a minimum Hamming distance to any constituent state
of the logical zero state (see Sec. VIII B, Eq. 10) of 0,
1, 2 and 3, respectively. For outcomes in the categories
(i) and (ii) the logical state is recoverable, whereas for
(iii) and (iv) an uncorrectable logical error is induced.

The relative occurrence of outcomes associated to those
four categories for the initialization of |0〉L is shown in
Fig. 2b. The verification circuit significantly suppresses
the occurrence of errors leading to logical errors, result-
ing in decreased relative occurrences for error patterns
(iii) and (iv) by a factor of more than 7. A figure of
merit describing the quality of the encoded state is the
logical state fidelity, i.e. the overlap of the measured with
the target logical Bloch vector. A detailed discussion of
the logical fidelity, not to be confused with the standard
quantum state fidelity, can be found in Sec. VII. The log-
ical infidelity is decreased from 0.090(4) to 0.012(1) by
introducing the verification of the initialization, showing
a clear signature that a FT implementation outperforms
its non-FT counterpart despite the increased circuit com-
plexity of one additional flag qubit and an increase from 8
to 11 entangling gates. The acceptance rate heralded by
a +1 outcome of the flag measurement is 78.9(5)%. This
behavior is in good qualitative agreement with numeri-
cal simulations which yield infidelities of 0.0538(2) and
0.0101(1) for the non-FT and FT circuits respectively,
and an acceptance rate of 84.42(4)%.

III. TRANSVERSAL FAULT-TOLERANT
OPERATIONS

The transversality of the Clifford group as a property
of the color code allows for the preparation of the six
cardinal states on the Bloch sphere, referred to as Pauli
eigenstates herein, by applying single-qubit rotations cor-
responding to the respective logical gate to all qubits in
the data register (see Fig. 1b). For both experimental
data but also results of numerical simulations, the veri-
fication of the initialization reduces the logical infidelity
of all six Pauli eigenstates, as can be seen in Fig. 2c (see
also Sec. VII for definition of the logical fidelity). Due to
miscalibration of experimental parameters the non-FT
preparation of |0〉L and |1〉L exhibit an increased infi-
delity, while the infidelity is comparable for all six states
for the FT scheme. The imperfections introduced by the
single-qubit rotations constituting the Clifford operation
are negligible compared to those originating from the ini-
tialization of the logical qubit. The average logical infi-
delity for the FT circuit is 0.011(1) with an acceptance
rate of 80.6(2)%, while simulations suggest an average in-
fidelity of 0.01203(4). The six stabilizer generators were
measured projectively to verify the preparation of the
correct encoded states for the Pauli states. The averaged
expectation value of the X-(Z-)type stabilizers is 0.826(3)
(0.760(3)) for the FT and 0.842(3) (0.790(3)) for the non-
FT preparation scheme. Further details on the measured
stabilizer generators can be found in Sec. VIII B.

The experimental implementation of the CNOT-gate
acting on two logical qubits encoded in the color code
is noticeably more challenging in terms of register size
and circuit complexity, requiring 29 entangling gates ap-
plied to 16 qubits. As shown in Fig. 3, we first prepare
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FIG. 2. Fault-tolerant (FT) preparation of a logical basis state |0〉L and logical Clifford operations. (a) Logical Pauli states
are prepared fault-tolerantly in three steps: First |0〉L is prepared by a non-fault-tolerant circuit. fault tolerance is ensured
through verification (V) of the state by coupling to an additional flag ancilla qubit. This qubit, when measured as |0〉,
signals that the correct state has been prepared fault-tolerantly, i.e. up to single-qubit errors. To prepare a logical Pauli
eigenstate other than |0〉L an additional transversal Clifford gate needs to be applied. (b) Relative occurrence rates of logical
output states of distance d to the target state |0〉L for non-FT (orange) and FT (turquoise) initialization. Example states
of d = 1, 2, 3 are X0 |0〉L , X0X1 |0〉L , X0X1X2 |0〉L. Simulation results are depicted by lighter colored bars. as described in
the main text, all circuit elements are subject to depolarizing noise in numerical simulations. (c) Logical infidelities of all six
logical Pauli eigenstates (red markers on Bloch sphere) including an ideal round of error correction performed in post-processing
(experimental/simulation results depicted darker/lighter).
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FIG. 3. FT implementation of a logical entangling gate. (a)
To estimate the performance of the logical CNOT-gate we
fault-tolerantly prepare six different logical two-qubit input
states and apply the transversal CNOT-gate (framed gate at
the end of the circuit). (b) Logical state tomography after
applying the CNOT-gate to the |+, 0〉 state. The phase of
the complex amplitudes is encoded in the color of the 3D
bar plot and the wireframes depict ideal results. (c) Logical
infidelities for six different input states of the CNOT-gate
(experimental/simulation results depicted darker/lighter).

the two logical |0〉L states, then apply single-qubit rota-
tions to prepare six different logical Pauli input states.
The transversal logical CNOT-gate is implemented by se-
quentially applying CNOT-gates to corresponding pairs
of physical qubits of the two logical qubits (see also
Fig. 1b). A single error on any of the physical qubits
propagates to at most one error on each of the logical
qubits and therefore remains correctable, thereby ensur-
ing fault tolerance of the gate realization. Applying the
logical CNOT-gate to the input state |+, 0〉L yields the
logical Bell state 1√

2
(|0, 0〉L+ |1, 1〉L) depicted in Fig. 3b.

This logical density matrix is retrieved from measure-
ments of all nine twofold combinations of the logical ob-
servables XL, YL and ZL on the two logical qubits, fol-
lowed by a maximum likelihood state reconstruction of
the two-qubit state [40]. The logical fidelity of the log-
ical Bell state is 0.754(9), consequently the correlations
of the logical operator outcomes correspond to those of a
Bell state with clear two-partite entanglement. Figure 3c
shows the logical infidelity for six different input states.
It reveals that the infidelity of output states is higher if
the control qubit is in a superposition state, thus leading
to an entangled outcome, compared to cases in which the
outcome is a basis state of the logical two-qubit computa-
tional basis. This increased error rate is well-described by
numerical simulations based on the circuit noise model:
The average logical infidelity is 0.110+3

−4 and 0.1035(1)
for the experimental implementation and the numerical
simulation, respectively.

IV. UNIVERSAL FAULT-TOLERANT
OPERATIONS

A universal set of logical gates allows to implement
any logical unitary operation to arbitrary precision. The
ability to perform a π/4-rotation about any axis is known
to be sufficient to augment the set of Clifford gates, which
are transversal in the color code, to a universal gate set.
The logical T-gate

TL = e−i
π
8 YL (1)

performs a π/4-rotation about the Y-axis and can be im-
plemented by magic state injection as shown in Fig. 1b. It
consists of the logical CNOT-operation we have demon-
strated in the preceding section, a logical measurement
and single-qubit Clifford operation conditioned on the
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in a first step, where a physical magic state |H〉 is mapped to the logical state |H〉L,nf encoded in the data qubits at positions

9 to 15 in the ion string (see labels at left of circuit). Thereafter, a FT measurement of the Hadamard operator (MH) is
carried out. Two ancilla qubits herald that the prepared state is a +1-eigenstate of the Hadamard operator but also that no
dangerous error occurred during the measurement. The magic state preparation is concluded with an error detection block that
measures the three X- and Z-type stabilizers each in a fault-tolerant fashion. The first part of the error detection circuit (first

dashed box), measures S
(1)
X , S

(2)
Z and S

(3)
Z , whereas the second part measures S

(1
Z , S

(2)
X and S

(2)
X . The magic state preparation

is discarded and repeated in case of a non-trivial syndrome of the eight ancilla qubits 1 to 8. (b) Logical state tomography
(see Sec. III) after FT magic state preparation. The phase of the complex amplitudes is encoded in the color of the 3D bar
plot and the wireframes depict ideal results. Phase deviations from the ideal density matrix are smaller than 50 mrad while
amplitude deviations are smaller than 0.07. (c) The decrease in infidelity of the logical magic state (red marker on Bloch sphere)
after each step of the FT preparation procedure is observed experimentally and captured by depolarizing noise simulations
(experimental/simulation results depicted darker/lighter).

logical measurement outcome. First preparing and then
injecting the logical magic state

|H〉L = cos(π/8) |0〉L + sin(π/8) |1〉L (2)

enables gate teleportation of the logical non-Clifford
T-gate. The logical magic state in Eq. (2) is the +1-
eigenstate of the logical Hadamard operator. Its corre-
sponding −1-eigenstate is |−H〉L = YL |H〉L, related to
|H〉L via a logical Y-flip.

Recently, a resource-efficient procedure to prepare a
magic state using FT circuits following the flag fault tol-
erance paradigm has been proposed [25]. The procedure
consists of the following steps, depicted in Fig. 4a: we be-
gin with a non-FT preparation of the magic state |H〉L,nf,
as recently demonstrated also in [30] (shown in subbox
”Non-FT encoding”). Next, a measurement of the logical
Hadamard operator is performed, which projects input
states onto the +1-eigenspace and discards states that
are eigenstates with eigenvalue −1 (subbox ”Hadamard
meas.”). The latter may be caused by single faults in the
circuit (e.g. faults in the initial state preparation of |H〉
for physical qubit 11), thus rendering the circuit non-FT
if −1-eigenstates are not discarded in this step. Here
both ancillas (qubits 1 and 2) are utilized as flag qubits.

The syndrome measurement ancilla flags when the −1-
eigenstate has erroneously been prepared, the second an-
cilla flags when a dangerous fault has occurred that may
corrupt the state. The last step is a complete error cor-
rection (EC) cycle, consisting of fault-tolerantly measur-
ing all six stabilizers of the color code using one flag qubit
per stabilizer as suggested in [23]. The EC block is used
to sort out faulty states whenever any flag qubit is mea-
sured as −1 and thus enables error detection (ED) (sub-
box ”Error detection”). The resulting states after per-
forming all three steps are guaranteed to be the correct
logical magic state |H〉L up to correctable single-qubit
errors provided at most one fault has occurred anywhere
in the circuit. In total the protocol requires eight ancilla
qubits that act as flags. The generated state is accepted
as valid if all flag qubits indicate that no harmful error
has happened.

We implement all steps for the magic state prepara-
tion and estimate the logical infidelities of the generated
magic state. We compare the results to numerical sim-
ulations of depolarizing noise on all circuit operations.
In Fig. 4b the reconstructed density matrix of the fault-
tolerantly prepared magic state is shown and its ideal
numerical values can be found in Eq. (35). Fig. 4c shows
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FIG. 5. FT T-gate injection. (a) After performing the fully
fault-tolerant three step procedure of preparing the logical
magic state, the logical T-gate is applied via logical gate
teleportation onto a second register that has a logical Pauli
state prepared. Conditional application of R ≡ RY (π/2) is
done in post-processing. (b) Logical process matrix of the
experimental logical T-gate. The phase of the complex am-
plitudes is encoded in the color of the 3D bar plot and the
wireframes depict ideal results. (c) Infidelities of the data
qubit state when applying the logical T-gate to several logical
Pauli input states (experimental/simulation results depicted
darker/lighter). Infidelity is the lowest for the |+i〉L state
since it is an eigenstate of the T-gate. Infidelity is slightly
larger for |1〉L and |+〉L than for |0〉L since preparation con-
tains an additional transversal Clifford operation prone to er-
rors.

the logical infidelity of the magic state, which clearly de-
creases after each preparation step in both experiment
and simulation. Each step of the magic state initializa-
tion process improves the quality of the generated logical
state. After the full FT initialization procedure, a logi-
cal infidelity of 0.006+14

−5 for the magic state |H〉L with an
acceptance rate of 13.7(3)% is found in the experimen-
tal realization, whereas numerical simulations predict ap-
proximately 27%, see Sec. VIII E for discussion.

Next, the fault-tolerant magic state initialization is
followed by transversal Clifford operations to fault-
tolerantly teleport the logical magic state, thereby result-
ing in a realization of a FT logical T-gate. For this, we
perform an in-sequence measurement of the flag qubits
for the magic state generation as sketched in Fig. 5a. In
the case of heralded successful magic state generation,
the ancilla qubits are in a well-defined state after the
measurement and can directly be re-used to encode a
second logical qubit in |0〉L using the FT protocol from
Fig. 2a. We then apply a transversal Clifford operation
on this second logical qubit to prepare one of the log-
ical initial states |0〉L , |1〉L , |+〉L , |+i〉L. Finally, the
transversal controlled-Y operation is applied on the sec-
ond register and all physical qubits are measured. The
measurement outcome for the logical Y-operator of the
control qubit in the first register is then extracted and the
conditional Y(π/2)-rotation R to the target qubit in the
second register is applied in post-processing, see Sec. VII

for details. By measuring the logical state of the target
register for the four different initial states, it is possi-
ble to reconstruct the logical process matrix, shown in
Fig. 5b with the ideal values explained in Sec. VIII D.
Fig. 5c shows the logical infidelities for the different in-
put states, yielding a mean infidelity of 0.10(1). It is ex-
pected and indeed observed experimentally that the best
fidelity is achieved for the logical Y -eigenstate |+i〉L as
it is an eigenstate of the T-gate. Infidelities for the three
other logical input states are slightly higher, which qual-
itatively agrees with the numerical simulations.

V. DISCUSSION AND OUTLOOK

In this work we have demonstrated the first fault-
tolerant implementation of a universal set of single- and
two-qubit logical gates. We were able to witness a hall-
mark feature of fault-tolerant circuit design, namely an
improvement of the performance of encoded qubits, de-
spite the FT implementations of encoding and manip-
ulation requiring an increased gate count and complex-
ity of the underlying circuits. The resource-efficient im-
plementation of these FT operations is enabled by the
all-to-all qubit connectivity in the present trapped ion
architecture, allowing for entangling operations between
arbitrary pairs of qubits. Predictions from numerical
simulations based on a relatively simple, generic and
architecture-agnostic depolarizing circuit noise model,
only informed by estimated experimental error rates, ap-
proximate the experimental findings well. The largest de-
viations between experimental behavior and and numeri-
cal predictions were observed for the logical CNOT-gate.
A more extensive characterization of this logical entan-
gling gate and the other fault-tolerant gadgets, together
with more sophisticated and validated theoretical noise
models will be subject to future investigations, and is
imperative for designing future QEC architectures and
procedures.

On the way towards error-protected universal quantum
computation on even more robust logical qubits, further
milestones ahead are the incorporation of repetitive QEC
cycles [30] into the FT logical gate operations demon-
strated in our work. Another hurdle to be taken is the
demonstration of error correction and FT gate operations
for larger-distance logical qubits [25].
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VI. EXPERIMENTAL METHODS

The experiments described in this work are performed
on a trapped ion quantum computer. 40Ca+ ions are
trapped in a macroscopic Paul trap and the optical qubit
is encoded in two Zeeman sublevels of the 4S1/2 and 3D5/2

electronic states. Further details on the experimental
setup can be found in the recent publication [33].

A. Trapping and cooling

For this work, the ion crystal is configured to consist
of 16 ions with an axial center-of-mass (COM) mode
frequency ωax, COM = 2π × 400 kHz and radial COM
mode frequencies of ωrad1,COM = 2π × 3270 kHz and
ωrad2,COM = 2π × 3100 kHz. Before executing any gate
sequence, the radial motional modes of the ion chain are
cooled nearly to the ground state via Doppler cooling
for 2 ms, followed by resolved sideband cooling for 15 ms.
Subsequently, the qubits are initialized via optical pump-
ing to the 4S1/2,mj=−1/2 ground state.

B. Qubit manipulation

Coherent qubit manipulation is performed by individ-
ually addressable laser pulses at a wavelength of 729 nm.
Pulses resonant with the 4S1/2,mj=−1/2 to 3D5/2,mj=−1/2

transition enable rotations around an arbitrary axis in
the equatorial plane of the Bloch sphere, where the angle
between the rotation axis and the X-axis is determined
by the phase φ of the light pulse. Those operations are

described by R
(i)
φ (θ) = exp(−i θ2 (σ

(i)
x cosφ − σ(i)

y sinφ)),

where σ
(i)
x and σ

(i)
y are single-qubit Pauli matrices acting

on qubit i. Rotations around the X-axis Rx (Y-axis Ry)
can be implemented by setting φ to 0 (−π/2). A pulse
length of 15 µs is required to implement a π/2-pulse on a
single qubit. Randomized benchmarking for single-qubit
gates in the 16-ion chain yields an average fidelity of a
π/2-gate of 99.51±0.05%. Additionally, rotations around
the Z-axis of the Bloch sphere for a specific ion can be
implemented virtually by introducing a phase shift to all
subsequent pulses applied to the ion.

Two-qubit gates are realized by the Mølmer-
Sørensen interaction [34] described by MSij(θ) =

exp(−i θ2σ
(i)
x σ

(j)
x ). An arbitrary pair of ions is addressed

with bichromatic beams slightly detuned from the ra-
dial COM mode ωrad1,COM. Gate time tgate = 270 µs
and detuning from the COM mode ∆ ≈ 2π × 3.7 kHz
are chosen to allow for simultaneous decoupling of the
two closest radial modes ωrad1,COM, ωrad1,2 at the end
of the interaction. An additional (third) frequency tone,
1.05 MHz blue-detuned from the carrier transition, com-
pensates the AC Stark shift induced by the bichromatic
light field. For θ = π/2 this results in an XX-gate which
is equivalent to a CNOT-gate up to single-qubit rota-

=
RX(v·π/2)

XX(-π/2)
RY(v·π/2) RX(π/2) RY(-v·π/2)

FIG. 6. Decomposition of a CNOT-gate into gates native to
the experimental architecture used in this work. The param-
eter v = ±1 can be varied arbitrarily.

tions [41], as depicted in Fig. 6. The average Bell state
fidelity in a chain of 16 ions is about 97.5% for entangling
gates between neighbouring ions.

C. State readout

Qubit state readout is performed by illuminating the
ions with a light field resonant to the 4S1/2 to 4P1/2 transi-
tion and collect scattered photons. Due to technical lim-
itations imposed by the EMCCD camera, site-resolved
state readout is only possible after the coherent evolu-
tion. In-sequence detection events utilizing an avalanche
photodiode (APD) can only reveal the number of excita-
tions present in the ion string. A subset of qubits can be
read out in-sequence by shelving the population in the
4S state of all other ions to the 3D5/2,mj=−3/2 Zeeman
sublevel prior to the illumination of the ion string with
the detection light field. This technique is used for the
measurements presented in Sec. IV. For the FT initial-
ization of the magic state the ancilla qubits are measured
via the APD. If there are no excited ions detected, the
protocol is continued by reusing the measured ions for
encoding a second logical qubit state and injecting the
magic state. After an illumination time of 2 ms for the
EMCCD measurement and 0.5 ms for the APD measure-
ment a readout fidelity of > 99.7% is achieved, where this
number refers to the single-qubit readout fidelity for EM-
CCD measurements and and the discrimination between
0 and > 0 excited qubits for APD measurements.

D. Error estimation

The errors given throughout this work solely account
for statistical errors. For the estimation of the statistical
fluctuations all measured outcomes are resampled from
a multinomial distribution according to their respective
probabilities. The stated errors in the text but also er-
rorbars given in figures correspond to 68% confidence in-
tervals extracted from the resampled datasets.

VII. SIMULATION METHODS

Theoretical simulation results presented in the main
text are obtained using stabilizer simulations and state-
vector simulations for the logical Pauli states and magic
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FIG. 7. Expectation values of the stabilizer generators and the logical operators of the seven-qubit color code for the six
cardinal states of the Bloch sphere. Results for the non-FT and FT preparation scheme are depicted in orange and turquoise
respectively, whereas results from numerical simulations are shown in lighter colored bars. 2500 and 106 runs were performed
in the experiment and for simulations for each prepared state, respectively. For the calculation of the expectation values of
the logical operators a round of perfect error correction is applied. For the measurements corresponding to the data presented
in this figure but also in Fig. 2 the sign of the rotation angle of physical Y-rotations is flipped, effectively implementing an
additional deterministic π phase flip on qubit 6 and a π bit flip on qubit 7 at the end of the circuit depicted in Fig. 2a. The
effects of this redefinition do not amount in a change of measurement bases and can be readily accounted for in post-processing.
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state preparation and injection circuits, respectively.
We use the ”Performance Estimator of Codes On Sur-
faces” (PECOS) package due to its flexibility in analyz-
ing error propagation in different error models through
Monte Carlo (MC) simulation (publicly available at
https://github.com/PECOS-packages/PECOS) [42]. In
these simulations any ideal circuit element is replaced by
a faulty element, consisting of the ideal operation fol-
lowed by an error operator, with a given probability.

We model circuit errors as depolarizing errors, which
reproduces well the experimentally observed infidelities
despite its conceptual simplicity which does not take
the microscopic physical processes underlying noisy gates
and operations in the ion trap into account explicitly.
Noise is applied in simulations by randomly placing
Pauli errors E according to the experimental physical
error rates after every single-qubit operation, i.e. single-
qubit gates, initializations and measurements, as well as
two-qubit gates, each with their respective error rates
p1, pi, pm and p2. These errors can be

Ex ∈ {σk,∀k ∈ {1, 2, 3}}, x ∈ {1, i,m} (3)

E2 ∈ {σk ⊗ σl,∀k, l ∈ {0, 1, 2, 3}} \ {I ⊗ I} (4)

where σk = {I,X, Y, Z} with k = 0, 1, 2, 3 are the Pauli
matrices. The error channels for our depolarizing noise
model read

Ex(ρ) = (1− px)ρ+
px
3

(XρX + Y ρY + ZρZ) (5)

E2(ρ) = (1− p2)ρ+
p2
15

 3∑
i,j=0

(σiρσj)− ρ

 (6)

so that any single-qubit error is applied uniformly to
the ideal operation with equal probability px/3 and the
single-qubit operation is executed ideally with probabil-
ity 1− px; two-qubit errors are applied uniformly after
the ideal two-qubit gates with equal probability p2/15
and any two-qubit gate is executed ideally with proba-
bility 1 − p2. In all simulations we used physical error
rates of

p1 = 0.005

p2 = 0.025 (7)

pi = pm = 0.003

for the corresponding operations.
The logical Pauli state encoding circuits (Fig. 2a) and

logical CNOT circuit (Fig. 3a) are simulated efficiently
using stabilizer simulations. This is possible since we
are preparing eigenstates of Pauli operators, measuring
exclusively in one of three possible Pauli bases here and
these circuits only contain Clifford gates.

This description as stabilizer states breaks down when
arbitrary single-qubit rotations are to be performed by
the circuit, especially with regards to the magic state,
Eq. (2), that generates the non-Clifford T-gate. The cir-
cuits that fault-tolerantly prepare the logical magic state

(Fig. 4a) and perform the gate teleportation (Fig. 5a)
contain non-Clifford operations and thus we are required
to run full statevector simulations.

In the teleportation circuit (Fig. 5a), the logical
controlled-Y is followed by measurement of all data
qubits of the first register in the Y-basis and application
of a classically controlled Y-rotation

R ≡ RY (π/2) (8)

depending on the measurement result of the first register
where the logical magic state has been prepared previ-
ously. The logical gate RL ' R⊗7 is applied to the sec-
ond register which carries a logical Pauli state, e.g. |+〉L.
The resulting output state is the logical T-gate applied
to the logical Pauli state, e.g. TL |+〉L. Both in simula-
tion and experiment the effect of the R-gate is taken into
account by altering the destructive final data qubit mea-
surements. Since R is a π/2-rotation about the Y-axis,
it maps Z-basis states onto X-basis states and vice versa.

VIII. CHARACTERIZATION METHODS

A. Ideal error correction

Whenever performing destructive measurements on en-
coded data qubits we may reinterpret the measurement
result according to the color code look-up table decoder.
For example, from measuring the bitstring 0000001 on
a seven-qubit register we may conclude for low physical
error rates present in our setup that the likeliest error on
those qubits has been a single X-flip on the first qubit and
reinterpret the measurement result as 0000000. This pro-
cess of ideal or in-software error correction (EC) is com-
monly used and possible whenever one aims not to keep
running further quantum circuits on the error-corrected
state. In general the corrected bitstring is determined
by extracting the syndrome from the overlap of the mea-
sured bitstring with the stabilizer generators in binary
notation and applying the respective correction. For CSS
codes such as the color code the X- and Z-sectors can
be treated distinctly. So when measuring the bitstring
0000001 in the Z-basis, the overlap with Z-stabilizers in

binary notation s
(1)
Z = 1010101, s

(2)
Z = 1111000, s

(3)
Z =

1100110 yields the syndrome [−1,+1,+1]. Here binary
1s correspond to a Pauli Z-operator for the single qubit at
the respective position and binary 0s represent the iden-
tity operation. Reinterpreting the measured bitstring as
0000000 is equivalent to applying a X1 correction op-
erator based on the syndrome information which would
correctly recover the original state. Since in this work
we are demonstrating FT operations, all final quantum
states may only be correct up to an arbitrary single Pauli
error. These errors are accounted for via ideal error cor-
rection.

https://github.com/PECOS-packages/PECOS
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B. Logical Pauli states

When fault-tolerantly encoding logical Pauli states
we characterize the output state by categories of errors
present after executing the circuit in Fig. 2a. The cat-
egories of errors given in Fig. 2b refer to the states of
distance d to the desired |0〉L-state which determines
whether or not we can correctly identify the state as |0〉L
after ideal EC.

We obtain the distance d to the desired |0〉L-state by
destructively measuring the data qubit register and find-
ing the minimal Hamming distance DH of the measure-
ment bitstring m to the bitstrings that label the basis
states of

|0〉L =
1√
8

(
|0000000〉+ |1010101〉+ |0110011〉

+ |1100110〉+ |0001111〉+ |1011010〉
+ |0111100〉+ |1101001〉

)
(9)

in post-processing:

d ≡ min
(
DH(m, 0000000), DH(m, 1010101),

. . . , DH(m, 1101001)
)

. (10)

Ideal EC will trivially correct the exact |0〉L state, i.e.
d = 0, and correct all states with single Pauli errors, e.g.
X2 |0〉L (d = 1). It will yield the logically flipped |1〉L
result when acting on a state of distance d = 2 or d = 3
from |0〉L, i.e. |0〉L carrying two X-errors or directly a
weight-3 logical bit flip XL.

For arbitrary logical Pauli states destructive mea-
surements must be performed in their respective basis.
However, only Pauli-X (Pauli-Z) errors are visible in
the preparation of logical Pauli-Z (Pauli-X) basis states
|0〉1 , |1〉L (|±〉L).

Note that for all measurements on the characteriza-
tion of logical Pauli states shown in Fig. 2 and Fig. 7 an
accidental redefinition of the rotation direction of phys-
ical single-qubit Y-rotations is accounted for in post-
processing. See Fig. 7 for more details.

C. Logical fidelities

Single-qubit logical states. – The logical fidelities
presented in the main text are obtained by reconstruct-
ing the logical Bloch vector of the prepared state ρ and
determining the overlap with the Bloch vector of a logical
target state. Within the code space, the projector onto
an ideal single-qubit logical target state ρt = |t〉 〈t|L is
given by

Pt =
1

2
(I +Ot) (11)

with Ot the logical operator that the target state
Ot |t〉L = |t〉L is the +1-eigenstate to. For the Pauli
states considered in this work the projectors are

P0/1 =
1

2
(I ± ZL) (12)

P± =
1

2
(I ±XL) (13)

P±i =
1

2
(I ± YL) (14)

and logical fidelity of a prepared state ρ follows as

Ft(ρ) = 〈Pt〉 = tr (Ptρ) . (15)

We emphasize that these logical fidelites are not equiv-
alent to the full quantum state fidelities F = tr (ρtρ)
but are the probabilities to be able to correctly conclude
which logical state was intended to be prepared or stored.

Combining Eqs. (12)-(14) with the expression for the
logical fidelity in Eq. (15), we can see that expectation
values of logical Pauli operators Ot need to be determined
in order to find the logical fidelities

F =
1

2
(1± 〈Ot〉) with Ot ∈ {XL, YL, ZL}, (16)

which e.g. evaluates to F0 = 1
2 (1 + 〈ZL〉) for the logical

Pauli state |0〉L. All six cardinal state logical fidelities
are shown in Fig. 2c. We sample the expectation values
of the logical Pauli operators by running stabilizer sim-
ulations of the respective preparation circuit N = 106

times followed by destructive measurement of all data
qubits and ideal EC in the respective Pauli basis. The
measurement result for a logical operator before EC is
determined as (−1)|m| by the number of 1s in the mea-
surement bitstring m modulo 2. Then a round of ideal
EC as described in Sec. VIII A is performed to obtain
the final measurement result. Measurement results from
each run are averaged to obtain the expectation value of
the respective logical operator.
Two-qubit logical states. – In order to characterize

the logical CNOT-gate through stabilizer simulations we
first list its action on various logical input states in the
table below:

input output
|0, 0〉L |0, 0〉L
|0, 1〉L |0, 1〉L
|1, 0〉L |1, 1〉L
|1, 1〉L |1, 0〉L
|+, 0〉L |β〉L
|+i, 0〉L |γ〉L

where |x, y〉L = |x〉L ⊗ |y〉L. Single logical qubit states
|x〉L and |y〉L are prepared distinctly in two seven-qubit
registers. The CNOT-gate, acting |x, y〉L 7→ |x, y ⊕ x〉L,
flips the second bit (target) if the first bit (control) is in
the 1-state. Thus, |+, 0〉L is mapped to the maximally
entangled Bell state

|β〉L =
1√
2

(|0, 0〉L + |1, 1〉L), (17)
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which can equivalently be expressed by the logical density
operator

ρβ = |β〉 〈β|L '
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (18)

where the matrix representation is in the logical two-
qubit computational basis. Quantum state tomography
has been performed to quantify experimental capabilities
to obtain the logical Bell state described by this den-
sity matrix as shown in Fig. 3b. Expectation values of
all logical two-qubit Pauli matrices including the iden-
tity are measured and subsequently maximum likelihood
techniques are used to reconstruct the logical density op-
erator [40]. The Bell state is stabilized by the logical
operators Z1

LZ
2
L and X1

LX
2
L where superscripts .1,2 refer

to the two logical qubits. Analogously, the CNOT maps
input |+i, 0〉L to the Y-basis maximally entangled state

|γ〉L =
1√
2

(|0, 0〉L + i |1, 1〉L). (19)

Its stabilizers can be obtained by realizing that both
states are related via a phase gate

|γ〉 = S1 |β〉 (20)

so by transforming the stabilizer generators of |β〉 as

S1Z1Z2S
†
1 = Z1Z2 (21)

S1X1X2S
†
1 = X1Y2 (22)

we obtain the stabilizer generators of |γ〉.
The projectors onto the logical two-qubit output states

we wish to characterize is now given by the product of
the projectors onto the simultaneous +1-eigenspace of
the logical operators in both registers

P00 = (P0 ⊗ I)(I ⊗ P0) =
1

2

(
I + Z1

L

) 1

2

(
I + Z2

L

)
(23)

P01 = (P0 ⊗ I)(I ⊗ P1) =
1

2

(
I + Z1

L

) 1

2

(
I − Z2

L

)
(24)

P11 = (P1 ⊗ I)(I ⊗ P1) =
1

2

(
I − Z1

L

) 1

2

(
I − Z2

L

)
(25)

P10 = (P1 ⊗ I)(I ⊗ P0) =
1

2

(
I − Z1

L

) 1

2

(
I + Z2

L

)
(26)

Pβ =
1

2

(
I +X1

LX
2
L

) 1

2

(
I + Z1

LZ
2
L

)
(27)

Pγ =
1

2

(
I + Z1

LZ
2
L

) 1

2

(
I +X1

LY
2
L

)
(28)

Employing Eq. (15), the logical fidelities for the output
states of the logical CNOT-gate follow as expectation

values of the logical two-qubit state projectors as

F00 =
1

4

(
1 + 〈Z1

L〉+ 〈Z2
L〉+ 〈Z1

LZ
2
L〉
)

(29)

F01 =
1

4

(
1 + 〈Z1

L〉 − 〈Z2
L〉 − 〈Z1

LZ
2
L〉
)

(30)

F11 =
1

4

(
1− 〈Z1

L〉 − 〈Z2
L〉+ 〈Z1

LZ
2
L〉
)

(31)

F10 =
1

4

(
1− 〈Z1

L〉+ 〈Z2
L〉 − 〈Z1

LZ
2
L〉
)

(32)

Fβ =
1

4

(
1 + 〈X1

LX
2
L〉 − 〈Y 1

LY
2
L 〉+ 〈Z1

LZ
2
L〉
)

(33)

Fγ =
1

4

(
1 + 〈Z1

LZ
2
L〉+ 〈X1

LY
2
L 〉+ 〈Y 1

LX
2
L〉
)

(34)

and are shown in Fig. 3b as results of N = 106 stabilizer
simulation runs of the logical CNOT circuit followed by
destructive measurement of all data qubits and ideal EC
in the respective Pauli basis. Averaging over measure-
ment results for the logical operators yields their expec-
tation value.

The logical magic state |H〉L may be denoted by the
logical density operator

ρH = |H〉 〈H|L '
1

2

(
1 + 1/

√
2 1/

√
2

1/
√

2 1− 1/
√

2

)
(35)

where the matrix representation is in the logical compu-
tational basis. Quantum state tomography of the exper-
imentally prepared logical magic state is shown in com-
parison to the theoretical values in Eq. (35) in Fig. 4b.
The fidelity of the logical magic state as shown in Fig. 4c
is given by

FH =
1

2

(
1 +
〈XL〉+ 〈ZL〉√

2

)
(36)

since the logical magic state is the +1-eigenstate of the
logical Hadamard operator HL |H〉L = |H〉L and its pro-
jector reads

PH =
1

2
(I +HL) =

1

2

(
I +

XL + ZL√
2

)
. (37)

When we inject the logical magic state onto logical
Pauli states the result is the logical T-gate applied to the
previously prepared logical Pauli state

|ψ〉L,out = TL |t〉L,in . (38)

For the four different input logical Pauli states
|0〉L , |1〉L , |+〉L and |+i〉L the output states are

|H〉L = TL |0〉L (39)

|−H〉L = TL |1〉L (40)

XL |H〉L = TL |+〉L (41)

|+i〉L = TL |+i〉L (42)
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and their projectors read

P0/1 =
1

2
(I ±HL) =

1

2

(
1± XL + ZL√

2

)
(43)

P+ = XLP0XL =
1

2

(
1 +

XL − ZL√
2

)
(44)

P+i =
1

2
(I + YL) . (45)

The respective logical T-gate output state fidelities Ft
for input Pauli state |t〉L are then given by

F0 =
1

2

(
1 +
〈XL〉+ 〈ZL〉√

2

)
(46)

F1 =
1

2

(
1− 〈XL〉+ 〈ZL〉√

2

)
(47)

F+ =
1

2

(
1 +
〈XL〉 − 〈ZL〉√

2

)
(48)

F+i =
1

2
(1 + 〈YL〉) . (49)

To estimate the expectation values of the logical oper-
ators occurring in the expressions for the fidelities given
above, we run N = 105 statevector simulations of the FT
preparation and injection circuits. Each run is followed
by destructive measurement in the respective Pauli basis
and ideal EC that determines a measurement outcome of
the logical Pauli operator. The expectation value is then
calculated as the mean over all measurement outcomes.

The sampling uncertainty εL when sampling the
expectation value of a logical Pauli operator OL is

εL =
√

Var(〈OL〉)
N and is propagated to their respective

fidelities by Gaussian error propagation.

D. Logical process matrix

Process matrices can be used to parameterize quantum
channels

E(ρ) =

3∑
n=0

3∑
m=0

χmnEmρE
†
n (50)

in the quantum operations formalism. The process ma-
trix χmn for the logical T-gate that we show in Fig. 5b
is described by the quantum channel

E(ρ) = TρT † =

3∑
n=0

3∑
m=0

χmnσmρσn (51)

where we expand the channel in terms of the logical Pauli
matrices. The matrix representation of χ in the logical
Pauli basis reads

χ =
1

2


1 + 1/

√
2 0 i/

√
2 0

0 0 0 0

−i/
√

2 0 1− 1/
√

2 0
0 0 0 0

 . (52)

Measurements of expectation values of the logical Pauli
basis for the T-gate input states |0〉L, |1〉L, |+〉L and
|+i〉L form a tomographically complete set and allow for
the reconstruction of the process matrix χmn [40].

E. Acceptance rates

We define the acceptance rate as ratio of circuit runs
where all flag qubits are measured as +1. The logical
Pauli |0〉L-state is fault-tolerantly encoded (|0〉L,ft) using
the circuit given in Fig. 2a, the logical magic state is pre-
pared both by using the non-FT circuit followed by only
the transversal Hadamard measurement (|H〉L,nf & MH)

and by using the full FT protocol (|H〉L,ft) as given in
Fig. 4a. Approximate acceptance rates in simulation and
experiment are shown in the table below for these three
different encoding circuits alongside with the respective
number of qubits acting as flags as well as circuit depth:

encoding depth #flags simulation experiment ∆ε
|0〉L,ft 25 1 85% 79% 7%

|H〉L,nf &MH 32 2 72% 57% 21%
|H〉L,ft 75 8 27% 14% 48%

We observe that the relative error ∆ε between MC sim-
ulation and experimentally measured acceptance rates
for the respective circuits increases with larger circuit
depth and number of flag qubits involved.
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