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Long-Range Ising Interactions Mediated by λφ4 Fields: Probing
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The generating functional of a self-interacting scalar quantum field theory (QFT), which contains all
the relevant information about real-time dynamics and scattering experiments, can be mapped onto a col-
lection of multipartite-entangled two-level sensors via an interferometric protocol that exploits a specific
set of source functions. Although one typically focuses on impulsive δ-like sources, as these give direct
access to n-point Feynman propagators, we show in this work that using always-on harmonic sources
can simplify substantially the sensing protocol. In a specific regime, the effective real-time dynamics of
the quantum sensors can be described by a quantum Ising model with long-range couplings, the range
and strength of which contains all the relevant information about the renormalization of the QFT, which
can now be extracted in the absence of multipartite entanglement. We present a detailed analysis of how
this sensing protocol can be relevant to characterize the long-wavelength QFT that describes quantized
sound waves of trapped-ion crystals in the vicinity of a structural phase transition, opening a new route to
characterize the associated renormalization of sound.
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I. INTRODUCTION

Large-scale fault-tolerant quantum computers have the
potential to solve relevant computational problems in ways
that surpass the capabilities of any classical device [1].
To achieve this long-term goal, these devices must pro-
cess information by taking explicit advantage of the laws
of quantum mechanics, while they also correct for the
errors that occur during the computation due to imperfec-
tions and noise. In this way, one actively battles a possible
accumulation of the errors [2], as has already been demon-
strated in various small-scale processors [3–12], including
atomic, molecular, and optical (AMO) technologies such
as trapped ions [13–15].
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Recent progress with noisy intermediate-scale quantum
technologies [16] has shown that, even if these errors
are not actively corrected for, and can thus accumulate,
the level of the overall noise is sufficiently low that cur-
rent noisy devices can already solve certain computational
tasks that no classical computer could solve in any feasi-
ble amount of time [17,18]. This has allowed the so-called
quantum advantage and supremacy to be demonstrated
[19]. In theoretical physics, some of the most compli-
cated problems appear in the study of quantum systems
with a large, sometimes even infinite, number of coupled
degrees of freedom. These systems are typically formu-
lated in terms of quantum field theories (QFTs) [20,21],
some of which pose problems whose solution has remained
elusive for decades, in spite of the availability of large
computational resources. With some notable exceptions
[22], determining their specific complexity, or proving rig-
orously that no classical computer will ever be able to
solve them in a feasible amount of time, are very deli-
cate matters. In any case, given the limitations of current
computational approaches in QFTs, e.g., real-time evolu-
tion or finite fermion densities, and their importance in
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understanding Nature at its most fundamental level [23],
any possible progress using alternative methods can be
of great value. In this context, we find that the prospects
of using noisy intermediate-scale quantum technologies
to address open questions in QFTs is fascinating [24,25].
We also find particularly enticing that these quantum tech-
nologies may offer novel ways to experimentally realize
and probe paradigmatic QFTs, which, although not finding
counterparts in Nature, e.g., reduced dimensionality, con-
tain key fundamental aspects that shape our understanding
of it. We emphasize below the results of the present work
in this respect.

Although the initial focus of such, so-called, quan-
tum simulators (QSs) [24,26] has been on condensed-
matter models, such as the bosonic [27,28] and fermionic
[29–31] Hubbard models with cold atoms [32,33], or mod-
els of interacting spins [34–37] with trapped ions [38,39];
QSs may also find numerous applications for high-energy
physics [40]. Trapped-ion systems have already been used
to explore the predictions of the Dirac equation [41–43].
Similarly, cold Fermi gases in hexagonal optical lattices
[44,45] serve to realize experimentally the fermion dou-
bling in lattice discretizations of Dirac QFTs [46]. One can
also explore other discretizations where topology plays a
key role [47], which connects to a very fruitful line of
research in cold-atom QSs [48]. The characteristic level
of microscopic control of these QSs allows exploration of
QFTs with additional interactions, the strength of which
can be tuned independently, connecting to paradigmatic
four-Fermi models [49–52] or self-interacting scalar fields
[22,53,54]. In connection to our most fundamental the-
ories of Nature [55], QSs have also been proposed to
target gauge theories [56,57] with both Abelian [58] and
non-Abelian [59] groups. Proposals to include fermionic
matter coupled to such gauge fields [60,61], together with
initial experimental progress along these lines [62–71],
have made it a very active and rapidly evolving research
direction [72,73] (see Ref. [40] for a recent review) with
interesting connections to topological phases of matter and
topological order [74–77].

In this paper, we focus on one of the aspects empha-
sized above: the possibility of realizing paradigmatic QFTs
that can be probed in unprecedented ways. In the context
of high-energy physics, one typically probes these QFTs
via scattering experiments where the particles, described
as the fundamental excitations of the fields, collide against
each other in large accelerators. In the context of AMO
quantum technologies, there are other techniques to probe
a quantum field, which can be traced back to the origins
of quantum optics and the theory of photodetection of the
electromagnetic field [78]. Historically, there have been
various models of the photodetector, such as harmonic-
oscillator probes [79], an ensemble of ancillary atoms with
a single ground state and a continuum of excited levels
[80], or a simple two-level atom or qubit [81], all of which

get excited by the absorption of photons from the electro-
magnetic field. By placing these probes at different spatial
locations, and detecting delayed photon coincidences, one
gets information about the retarded correlation functions
of this gauge field. These correlation functions play a key
role in the quantum theory of optical coherence [78], and
form the basis of numerous ground-breaking experiments
[82,83] that have shaped the progress of AMO quantum
technologies [84]. Similar ancillary probes are referred to
as particle detectors in QFTs on curved space times [85],
such as a quantum particle held in a box that moves with
constant acceleration in the background of a scalar field
[84]. The excitation rate of this accelerated particle, which
is nonzero even when the field is in the vacuum, probes
the so-called Unruh effect [86]. Modified versions of this
particle detector, such as a two-level atom [87,88] or a har-
monic oscillator [89], are commonly referred to as Unruh-
DeWitt detectors, which, if correctly switched on and
off, can give information about the so-called Wightman
correlation function of the scalar field [90].

In the context of contemporary applications of quantum
technologies, in particular, quantum sensing [91], these
photon and particle detectors can be categorized as Rabi-
type quantum sensors, as they rely on the excitation of the
probe to gather information about the quantum field. There
is, however, a different kind of quantum sensor where,
rather than focusing on its excitation probability, one
monitors its coherence via Ramsey interferometry [92].
Ramsey-type sensors are actually used in high-precision
measurements, and exploited as frequency standards in the
so-called atomic clocks [93], which include both trapped-
ion and cold-atom technologies. In the context of QSs of
condensed-matter models, Ramsey sensors have also been
considered as probes for quantum many-body properties,
both in equilibrium [94,95] to probe equal-time correlation
functions [96,97], and out of equilibrium [98–102], where
noise and fluctuations can give crucial information about
transport phenomena.

In the context of QSs of high-energy physics, to the
best of our knowledge, Ramsey-type probes have been
much less studied. In Ref. [103], these probes were used
to characterize the Wilson loop operator of a lattice gauge
theory. In Ref. [53], Ramsey-type probes coupled to self-
interacting Klein-Gordon fields have been explored for
trapped-ion QSs. Although the real Klein-Gordon field
[104,105] is an archetype QFT [20], and the inclusion of
self-interactions, e.g., λφ4 terms, shapes our understanding
of crucial aspects of QFTs such as renormalization [106];
there is no fundamental particle in Nature described by this
real scalar field. It is thus quite interesting that QSs have
the potential to realize this paradigmatic QFT in real exper-
iments and, actually, explore different effective dimension-
alities. Moreover, as put forth in Ref. [53], one can devise
a Ramsey-type protocol to probe this field theory, turn-
ing key QFT concepts such as the generating functional

020352-2



LONG-RANGE ISING INTERACTIONS MEDIATED BY λφ4 FIELDS. . . PRX QUANTUM 3, 020352 (2022)

[20] into experimentally measurable observables. In that
work, we showed how one can devise an interferometric
protocol that maps the information of such a generating
functional onto a multipartite entangled state of ancillary
qubits [53], which are coupled to the scalar field via a gen-
eralization of the so-called Schwinger sources [107,108].
It is interesting that, in contrast to the previous probing
protocols that infer either equal-time, retarded, or Wight-
man correlation functions, by switching these sources on
and off appropriately in the impulsive (i.e., antiadiabatic)
regime [53], these entangled Ramsey sensors give access
to any n-point Feynman propagator. Such time-ordered
functions form the basis of current approaches to QFTs,
and measuring them is thus a way of extracting all relevant
information about equilibrium or real-time dynamics of the
QFT, providing an alternative to scattering experiments.

A. Summary of the main results

The protocol presented in Ref. [53] can be considered as
an initial step that identifies an interesting research direc-
tion: key mathematical tools used to characterize QFTs,
such as the generating functional, may actually become
observable quantities by leveraging advances in the field
of quantum technologies. In particular, this interferomet-
ric protocol exploits entanglement via specific quantum
circuits that prepare a multipartite entangled probe (see
Fig. 1), which can be coupled to the interacting quantum
field via fast microscopic control at the level of each of
the sensing qubits, which must be placed at specific space-
time points of an underlying lattice regularization of the
QFT. The scheme to infer the generating functional in its

full generality requires thus a large number of qubits, deep
quantum circuits to prepare the probes, fast and precise
switching of the qubit-field couplings, and an excellent
isolation from environmental noise such that the interfero-
metric signal is not degraded substantially by decoherence.
Even if the price is high, the reward is worth it: one would
have access to all of the equilibrium and nonequilibrium
properties of the simulated QFT going beyond the capa-
bilities of present numerical approaches based on classical
hardware. On the other hand, reaching these demands with
current quantum technologies seems to be still far ahead.
For instance, the largest multipartite maximally entangled
states prepared to date with bare circuits, i.e., no error mit-
igation or postselection, has reached N = 24 qubits [109].
Additionally, depths beyond 100 gates have been achieved
in recent sequential circuits with N = 16 qubits [110]. This
is still far away from the spatial lattice sizes and temporal
resolution for the fast switching that would be required to
recover the continuum-limit generating functional of the
QFT one is trying to probe. A timely question is thus
to explore alternative strategies, which, albeit not being
able to recover the full generating functional of interacting
QFTs, still provide a novel manner to probe key aspects
of QFTs that is readily applicable in present or near-term
quantum technologies.

In this paper, we address this important question, and
show that a much simpler sensing protocol for QFTs can
dispense with (i) the requirement of initializing the qubits
in a large multipartite entangled state, and (ii) the need
of fast and accurate switching controls. We show that,
by abandoning the impulsive regime to focus instead on
harmonic off-resonant Ising-Schwinger sources, one can

                 on/off

impulsive switching

Ising-Schwinger 
sources

1

)

2

     

Multitpartite entangled probes

/

FIG. 1. Scheme of the impulsive sensors for the generating functional: a real scalar field φ(t, x) is coupled locally by Ising-Schwinger
sources of strength J (t, x) to an ancillary Ising field, which, in principle, also resides at every space-time point σ (t, x). In practice,
the QFT will be regularized on a lattice of spacing a, and the discretized Ising field need only be placed at a reduced set of spatial
locations, which can be interpreted as a multipartite sensor. By switching on and off the Ising-Schwinger sources are impulsively, as
discussed in the text, one maps the information of the generating functional of the field Z[J ] onto the Ising spins (see the first inset).
The full time evolution, including the initialization of the Ising spins in a multipartite entangled state, can be represented as a quantum
circuit (see the second inset).
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characterize the interacting QFT by exploiting a Yukawa-
type interaction between the qubits. Such an interaction
takes the form of an effective quantum Ising model with
long-range couplings that depend on a dimensionally
reduced Euclidean propagator of the self-interacting Klein-
Gordon field. Despite lacking the generality of the scheme
to probe the full generating functional [53], which would
allow the recovery of any real-time n-point function, we
show that this dimensionally reduced propagator contains
relevant information about various aspects of the interact-
ing QFT. In particular, we show that it can be used to
explore the renormalization of the scalar field, which can
be directly probed by monitoring the dynamics of the ancil-
lary qubits that are no longer required to be prepared in
a large multipartite entangled state. Additionally, in con-
trast to the impulsive protocol [53], the sources need not
be switched on and off in various combined experiments,
but are simply adiabatically ramped up and down at the
initial and final instants of the probing sequence. In order
to analyze this novel probing scheme, we describe the
sensor-field system through a path-integral formulation in
terms of a scalar-σ model composed by a self-interacting
Klein-Gordon field coupled to a constrained σ field that
represents the underlying qubits. This framework allows
quantitative calculations to be performed for the interact-
ing QFT coupled to Ising-Schwinger probes, and shall
be the starting point for future works addressing differ-
ent aspects of this new scheme, e.g., finite temperatures,
out-of-equilibrium dynamics, etc.

In addition to these theoretical results, our paper pro-
vides a detailed and realistic description of an implemen-
tation with current trapped-ion devices, going significantly
beyond the description of Ref. [53]. We show that the QFT
framework connects quantitatively to a long-wavelength
description of the aforementioned QSs of spin models
in trapped ions [34–36,39], and that nonlinearities will
increase their role for experiments performed in the vicin-
ity of a structural phase transition [111]. Here, the role
of the real Klein-Gordon field is played by the transverse
sound waves of the ions, which, for sufficiently low tem-
peratures, describe the vibrations of the ions around the
equilibrium positions of a linear Coulomb crystal. In con-
trast to sound waves in solid-state materials, a detailed
long-wavelength theory shows that these vibrational exci-
tations, the so-called phonons, are massive particles and
thus move inside an effective light-cone determined by a
transverse speed of sound that is experimentally tunable.
As one modifies the ratio of the trap frequencies, approach-
ing the aforementioned structural phase transition, the bare
mass of the effective Klein-Gordon field reduces, whereas
the role of quartic nonlinearities becomes more impor-
tant. By introducing additional lasers, one can couple
the transverse motion of the ions to the internal energy
levels, which can be described in terms of qubits. We
show quantitatively that the low-energy description of this

system is the aforementioned scalar-σ QFT, providing
specific expressions for all microscopic parameters. By
exploiting the connection to high-energy physics, the cur-
rent paper pinpoints the origin of the long-range spin-spin
couplings routinely observed in trapped-ion QSs [34–36,
39]. These can be understood as Yukawa-type interactions
due to the exchange of phonons between the qubits, which,
by virtue of the additional quartic self-interactions, can
now be subjected to various scattering processes along the
way (see Fig. 2). This allows us to predict that, in com-
parison to the standard phonon-mediated Ising interactions
in harmonic trapped-ion crystals [34–36,39], by approach-
ing the structural phase transition, the intensity and range
of the Ising couplings get contributions from these scat-
tering events of the virtually excited bosons, and can be
neatly described in terms in light of the renormalization of
QFTs. We show that the mass and wave-function renor-
malization of the scalar field control the main changes in
interaction range and strength due to the nonlinearities. In
essence, the role of the quartic interactions leads to a renor-
malization of transverse sound in the ion crystal, which
can be probed by monitoring the real-time dynamics of
an effective long-range Ising model. We believe that the
results presented in this work are in reach of several cur-
rent trapped-ion experiments, and provide a key insight in
how nonlinearities, finite temperature, multispin interac-
tions, etc., will come into play in near-term experiments.
The new scheme analyzed in this work provides an impor-
tant and timely step forward, both regarding the prospect
of an experimental implementation with current techniques
for QSs with large ion strings [112], as well as providing a
new QFT framework for future theoretical studies such as
finite-temperature effects or out-of-equilibrium dynamics.

Since the topic of this paper is multidisciplinary in
nature, we have made a special effort to present our results
in a way that is accessible to two communities, those work-
ing in lattice-field theories for high-energy physics and
those more familiarized with quantum optics and AMO
quantum technologies. We thus include additional mate-
rial in Appendixes to make this work self-contained, and
to present concepts in a accessible way.

II. KLEIN-GORDON SCALAR FIELDS COUPLED
TO Z2 FIELDS

In this section, we use canonical-quantization tech-
niques to describe two different sensing protocols for the
generating functional of the massive Klein-Gordon field
Z0[J ]. In Appendix A, the reader can find details about
the derivation of Z0[J ] for this field theory, which we now
build upon to present an alternative take on the quantum-
sensing protocol introduced in Ref. [53]. As described in
Sec. II A, the exact form of the unitary evolution operation
sheds light on the need of multipartite entangled probes
to extract Z0[J ] within this scheme. This discussion also
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harmonic sources
Adiabatically switched

harmonic sources
Adiabatically-switched

Unentangled probesUnentangled probes

FIG. 2. Scheme of the harmonic sensors for the generating functional: two distant Ising spins at positions x1 and x2 are coupled
to the real scalar field φ(t, x) locally by harmonic Ising-Schwinger sources J (t, xi) ∝ sin(ωJ t − kJ · xi) that is adiabatically switched
during the whole probing lapse. As a consequence, the scalar bosons will mediate an effective Ising interaction between the spins,
which is represented by a double blue line. In the upper inset, we depict the strength of this spin-spin interaction, which is effectively
controlled by a dimensionally reduced Euclidean propagator of the scalar field. In the presence of quartic couplings, this propagator
will include all possible scattering events that can be represented in terms of Feynman diagrams, as displayed in the inset up to second
order of the quartic interaction strength.

clarifies, as described in Sec. II B, that the mapping of
Z0[J ] onto the probes relies on interactions mediated by
the virtual exchange of Klein-Gordon bosons, which in
turn suggests a simpler sensing protocol based on the use of
off-resonant harmonic sources, as introduced in Sec. II B.
By measuring the dynamics of a pair of unentangled probes
to infer the characteristics of an effective long-range Ising
Hamiltonian, one can reconstruct the two-point propagator
and with it, also the free generating functional Z0[J ] in a
simpler manner.

A. Impulsive sensors of the generating functional

In the framework of canonical quantization, the real
scalar field evolving under a Klein-Gordon equation
[104,105] can be described by the following Hamiltonian:

H0 =
∫

ddxH0, H0 = 1
2
π2(x)

+ 1
2

[∇φ(x)]2 + 1
2

m2
0φ

2(x), (1)

where φ(x),π(x) are the field operator and its conju-
gate momentum, both defined on a D = d + 1 Minkowski
space time x = (t, x), and satisfying equal-time bosonic
commutation relations [φ(t, x),π(t, x′)] = iδd(x − x′).
Here, m0 stands for the bare mass of the scalar bosons, ∇
contains only spatial derivatives, and we use natural units
� = c = 1.

The generating functional Z0[J ] depends on the so-
called Schwinger sources J (x) [107,108], which are clas-
sical fields that introduce local perturbations in the original
QFT, Eq. (1), modifying the number of excitations of the
field, and thus creating or annihilating scalar bosons (see
Appendix A). We consider the promotion of these clas-
sical sources to quantum-mechanical degrees of freedom
[53], by introducing an Ising field σ (x) expressed in terms
of the identity and Pauli matrices

σ 0 = I2, σ 1 = X , σ 2 = Y, σ 3 = Z, (2)

in the corresponding basis {|0x〉 = |↑x〉 , |1x〉 = |↓x〉}.
With this notation, the Ising fields can be interpreted as
qubits [1] that will serve as two-level quantum sensors
located at different space-time points (see Fig. 1). Accord-
ingly, the Hilbert space becomes a tensor product H =
Hφ ⊗ Hσ , and one can exploit the coupling between the
scalar and Ising fields to define a measurement protocol for
Z0[J ]. This becomes particularly interesting when includ-
ing interactions, as the same measurement scheme applies,
but the generating functional now contains nontrivial infor-
mation about the interacting fields, such as renormalization
and the underlying fixed points [106,113].

As discussed in Ref. [53], the Schwinger sources are
promoted to J (x) → J(x) · σ (x), which becomes interest-
ing for Jα(x) = J (x)(δα,0 − δα,3)/2, as the scalar field then
couples to

J(x) · σ (x) = J (x)P(x), (3)
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where we introduce the orthogonal Ising projector

P(x) = |↓x〉 〈↓x| = 1
2

[I − Z(x)]. (4)

The new Hamiltonian density H̃0 + ṼJ with these Ising-
Schwinger sources is

H̃0 = H0 + δε(x)Q(x), ṼJ = −J (x)φ(x)P(x), (5)

where we introduce the remaining orthogonal projector

Q(x) = |↑x〉 〈↑x| = 1
2

[I + Z(x)], (6)

and δε(x) is the energy density for the Ising field. Since
[P(x), Q(y)] = 0, it is straightforward to see that the time-
evolution operator U(tf , t0) = UH̃0

UṼJ
can be expressed

in terms of two unitaries

UH̃0
= e−i

∫
dDxH̃0 , UṼJ

= T
{

e+i
∫

dDxJ (x)φH (x)P(x)
}

,

(7)

in complete analogy to the situation for the stan-
dard Schwinger sources in Eq. (A2). Here, T{·} is
the time-ordering operator, the scalar fields φH (x) =
(UH̃0

)†φ(x)UH̃0
evolve in the Heisenberg picture with

respect to the unsourced Klein-Gordon Hamiltonian
(1), whereas the Ising projectors do not change since
UH̃0

P(x)(UH̃0
)† = P(x). By using the Magnus expansion

[114,115] described in Eq. (A7) of the Appendix, and car-
rying out the steps in analogy to the Klein-Gordon QFT
with classical sources of Appendix A, we find

UṼJ
= UN e−(1/2) ∫ dDx1

∫
dDx2P(x1)J (x1)
m0 (x1−x2)J (x2)P(x2).

(8)

Here, we introduce the normal-ordered unitary

UN =: e−i
∫

dDxJ (x)φH (x)P(x) :, (9)

and the time-ordered Feynman propagator of the scalar
field


m0(x) =
∫

k

̃m0(k)e

−ikx, 
̃m0(k) = i
k2 − m2

0 + iε
,

(10)

where k = (ω, k), and we define
∫

k = ∫
dDk/(2π)D, and

ε → 0+. The structure of Eq. (8) already suggests that
it may be possible to map all the information of the

generating functional (11) of the massive Klein-Gordon
field

Z0[J ] = e−(1/2) ∫ dDx1
∫

dDx2J (x1)
m0 (x1−x2)J (x2), (11)

onto the dynamics of the qubits by an appropriate protocol.
Note that Z0[0] = 1, so we are referring to the free normal-
ized generating functional, or the full one Z[0] = 1, in this
paper.

The key idea underlying the mapping of the generat-
ing functional onto the Ising probes, presented in Ref.
[53] using a different approach, is that the full time evo-
lution U(tf , t0) = UH̃0

UṼJ
can map this information into

the amplitudes of a specific initial state. One starts by
preparing a Greenberger-Horne-Zeillinger (GHZ) state for
the qubits through the quantum circuit displayed in Fig. 1,
which applies concatenated CNOT gates to a product input
state, and should be extended to all the locations of the
Ising spins. After these gates [1], and right before the Ising-
Schwinger sources are switched on, the state is |ψ(t0)〉 =
|0〉 ⊗ |GHZ〉, where |0〉 is the Klein-Gordon vacuum, and
|GHZ〉 = (�x |↑x〉 +�x |↓x〉)

√
2 is a multipartite entan-

gled state. We now let the scalar and Ising fields cou-
ple through the Ising-Schwinger sources, and obtain the
time-evolved state |ψ(tf )〉 = UH̃0

UṼJ
|ψ(t0)〉, where the

unitaries are described in Eq. (7). Due to trivial action
of the normal-ordered part, Eq. (9), on the Klein-Gordon
vacuum, and the action of the Ising projectors on the corre-
sponding qubit states, only the second part of the entangled
state evolves nontrivially, yielding

|ψ(tf )〉 = 1√
2

|0〉 ⊗
(
�x |↑x〉 + Z0[J ]ei

∫
dDxδε(x)�x |↓x〉

)
.

(12)

Here, we readily find that the free generating functional
(11) appears in the relative amplitude of the time-evolved
spin state, after neglecting an irrelevant global phase fac-
tor that oscillates with the zero-point energy of the scalar
field. The signal can be extracted by measuring the global
parities

P1[J ] = 〈ψ(tf )|�xX (x) |ψ(tf )〉 = Re{Z0[J ]ei
∫

dDxδε(x)},
P2[J ] = 〈ψ(tf )|�xY(x) |ψ(tf )〉 = Im{Z0[J ]ei

∫
dDxδε(x)}.

(13)

After introducing the generating functional of connected
propagators, which in the noninteracting case simply reads

W0[J ] = −i log Z0[J ]

= i
2

∫
dDx1

∫
dDx2J (x1)
m0(x1 − x2)J (x2).

(14)

Here, one can see that this functional is encoded in the rel-
ative phase of the multipartite entangled state, Eq. (12),
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unveiling some analogy with Ramsey interferometry [92],
one of the key methods in quantum sensing [91]. The
global parities are thus a multipartite generalization of a
pair of Ramsey signals

P1[J ] = cos
(

W0[J ] +
∫

dDxδε(x)
)

,

P2[J ] = sin
(

W0[J ] +
∫

dDxδε(x)
)

. (15)

Selecting specific timings (t0, tf ) would allow one to
reconstruct the desired generating functional for any par-
ticular set of sources J (x) from experimental data. This
result teaches us an important lesson: mathematical con-
structs in QFTs, such as the generating functional, can
indeed become observable quantities when combining
ideas from high-energy physics and AMO quantum tech-
nologies.

As discussed in Ref. [53], the qubits need not be
attached to every space-time point when one is only inter-
ested in recovering a specific n-point propagator (A3). In
that case, it suffices to use n qubits located at the desired
spatial locations δε(x) = ω0

∑n
i=1 δ

d(x − xi), where ω0 is
the transition frequency between the two levels, and switch
on and off the sources impulsively (i.e., nonadiabatically
with respect to any other timescale in the problem) at the
corresponding lapses of time J (x) = ∑

i Jiδ
D(x − xi), as

indicated in Fig. 1. One would then gather the interfero-
metric experimental data P1, P2 for various combinations
of the impulsive sources [53], and infer the correspond-
ing functional derivatives that lead to the desired n-point
propagator. In the simplest situation, inferring 
m0(x1 −
x2) requires repeating the interferometric protocol four
times using two qubits at each of the spatial locations
of interest x1, x2, and switching on and off the sources
at the corresponding times t1, t2 of the space-time points
x1, x2. Together with the requirement of using multipar-
tite entangled states for the initialization of the Ramsey
probe, maintaining the coherence of macroscopically dis-
tinct states, and repeating the whole experimental sequence
to extract the quantum-mechanical statistics, this sensing
protocol turns out to be quite challenging from an experi-
mental perspective. In the following section, we describe a
simpler alternative.

B. Harmonic sensors and long-range Ising models

The above simple calculation for the free Klein-
Gordon field unveils an interesting fact, which was par-
tially hidden under the general formalism for interacting
fields [53]. Equation (8) shows that the Z0[J ] mapping
relies on unitaries describing pairwise interactions UṼJ

=
UN�x1,x2Ux1,x2 with

Ux1,x2 = e−(1/2)P(x1)J (x1)
m0 (x1−x2)J (x2)P(x2). (16)

This unitary represents a pairwise coupling between dis-
tant qubits, which must be mediated by the Klein-Gordon
bosons acting as fundamental carriers of a spin-spin inter-
action. Since the Feynman propagator of the scalar field
appears in Eq. (16), there might be simpler measurement
protocols to extract relevant properties of the QFT with-
out resorting to the full generating-functional protocol just
described.

Let us note, before moving on, that the crucial aspect
of the above pairwise unitary is not restricted to the spe-
cific form of the Ising-Schwinger sources, which involve
orthogonal projectors, Eq. (5). The key point is that the
coupling must contain a qubit operator P(x) → O(x) that,
in the Heisenberg picture with respect to the unsourced
Hamiltonian (5), commutes with itself at different instants
of time [OH (x), OH (y)] = 0. As becomes clear when dis-
cussing the particular application for trapped-ion quan-
tum computers [116,117], one can find various schemes
where this operator is any of the Pauli matrices O(x) ∈
{X (x), Y(x), Z(x)}. In the following, we solely focus on the
Z-type couplings

ṼJ = −J (x)φ(x)Z(x), (17)

leading to Ising ZZ pairwise unitaries

Ux1,x2 = e−(1/2)Z(x1)J (x1)
m0 (x1−x2)J (x2)Z(x2), (18)

but note that the results will be interchangeable to the other
XX or YY Ising interactions.

As shown below, for certain types of sources, these pair-
wise unitaries can be expressed in terms of an effective
time-independent Hamiltonian, which allow for a differ-
ent sensing protocol. In particular, the probes evolve under
an effective Ising model with long-range couplings Heff,
which controls completely the nontrivial part of the time
evolution

U(tf , t0) ≈ UH̃0
Ueff = e−i(tf −t0)H̃0e−i(tf −t0)Heff . (19)

Instead of using nonadiabatic sources that are switched on
and off in the impulsive regime, we consider a harmonic
source

J (x) = J0 sin(kJ x) = J0 sin
(
ωJ t − kJ · x

)
, (20)

where J0 is the coupling strength density, and kJ =
(ωJ , kJ ) is the external D-momentum determining the
plane-wave harmonic source. We also consider that the
source lies below the resonance of the Klein-Gordon
modes (i.e., ωJ � m0) and, moreover, its strength density
is constrained according to

J0 
 (ωk − ωJ )ddk < (ωk + ωJ )ddk. (21)

In this regime, the time integrals underlying the space-time
formulation of the evolution operator (8) can be performed
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analytically using the forward and backward parts of the
Feynman propagator (A9). We find that the normal-ordered
part of Eq. (8) becomes negligible, such that the evolution
of the scalar field and the Ising spins gets effectively decou-
pled. Whereas the former evolves under the Klein-Gordon
dynamics, Eq. (1), the spins also experience the second-
order term including the pairwise couplings, Eq. (18),
which leads to

Ueff = ei(tf −t0)
∫

ddx1
∫

ddx2
∫
k{J2

0 cos[(k−kJ )·(x1−x2)]/

× (ω2
k−ω2

J )}Z(x1)Z(x2), (22)

where
∫

k = ∫
ddk/(2π)d stands for the integrals with

respect to the spatial components of the D momentum.
Using Eq. (19), one readily identifies an Ising Hamiltonian

Heff = 1
2

∫
ddx1

∫
ddx2J(x1 − x2)Z(x1)Z(x2), (23)

where the factor of 1/2 avoids double counting of pairs,
and we introduce the long-range coupling-strength density

J(x1 − x2) = −2J2
0

∫
k

cos [(k − kJ ) · (x1 − x2)]

k2 + (m2
0 − ω2

J )
. (24)

It is worth pointing out that, despite starting with a local
Lorentz-invariant field theory in Eqs. (1) and (5), it seems
that we arrive to an action at a distance between the Ising
fields (23) that naively violates causality. Note, however,
that the relevant timescale of the problem t ∼ 1/J(x1 −
x2)d2dx � ||x1 − x2||/c = tret, where we include again
the speed of light to identify the corresponding retardation
time tret. Accordingly, the regime of validity of the effec-
tive Ising model, Eq. (23), assumes that the timescales are
sufficiently large for the bosons to causally connect any
pair of qubits.

Let us also point out that, in order to achieve this purely
unitary dynamics, keeping the Ising fields off resonant is
crucial. Otherwise, the scalar bosons could also act as a
source of dissipation, as our field theory could be under-
stood as a multiqubit continuum limit of the unbiased
spin-boson model at zero temperature [118–120]. Here, the
harmonic frequency would play the role of the so-called
quantum tunneling 
QT ≈ ωJ , provided that Eq. (60) is
fulfilled. Neglecting possible collective dissipative effects,
the main source of irreversible dynamics would appear
in the form of decoherence with a dephasing rate 
d
that is proportional to the spectral density S(ω) of the
Klein-Gordon modes at a slightly renormalized tunneling
amplitude ωJ ,r < ωJ < m0 [121]. Since there are no modes
with frequency ωk < m0, the corresponding spectral den-
sity would be zero S(ωJ ,r) = 0, such that 
d = 0, and
we can simply focus on the purely coherent dynamics of
Eq. (19).

Coming back to the integral (24), we note that it can be
expressed in terms of the dimensionally reduced Euclidean
propagator of a Gaussian field in d dimensions [106,
122,123]. This is defined through the following Green’s
function:

(−∇2 + m2
eff

)
GE

meff
(x) = δd(x), (25)

where the effective mass is shifted from the bare mass to

m2
eff = m2

0 − ω2
J . (26)

Since the Compton wavelength in natural units is simply
the inverse of the bare mass ξ0 = 1/m0, we can define the
following effective wavelength:

ξeff = m−1
eff = 1/

(
m2

0 − ω2
J

)1/2
, (27)

which shall control the range of the mediated interactions.
This Euclidean propagator can be obtained by lowering

the dimension D = d + 1 → d of the Feynman propagator
of Eq. (10), and making a Wick rotation, yielding

GE
meff
(x) =

∫
k

eik·x

k2 + m2
eff

=
(

meff

||x||
)ν Kν(meff||x||)

(2π)ν+1 , (28)

where ν = (d/2)− 1, and Kν(u) is the modified Bessel
function of the second kind [124], also called the Basset
function [125].

We thus find that the effective spin-spin couplings medi-
ated by a D-dimensional Klein-Gordon field subjected to
harmonic Ising-Schwinger sources are controlled by the
dimensionally reduced Euclidean propagator via

J(x1 − x2) = −2J2
0GE

meff
(x1 − x2) cos

[
kJ · (x1 − x2)

]
.

(29)

Let us pause for a moment and analyze this result. First of
all, one can check that the above expressions are dimen-
sionally correct in mass and energy units. According to
Eq. (1), the natural or scaling dimension of the scalar field
is dφ = (d − 1)/2, whereas the Ising field is dimensionless
dσ = 0. Therefore, the Euclidean propagator (28) has natu-
ral dimension dGE

m
= d − 2, whereas the coupling strength

J0, Eq. (20), has natural dimension dJ0 = (d + 3)/2, and
one finds that the effective Ising Hamiltonian (23) has units
of energy. We now discuss the implications of the form
of the spin-spin couplings, Eq. (29), in various dimen-
sions. For the D = 3 + 1 Klein-Gordon field, ν = 1/2, and
the modified Bessel function is K1/2(u) = √

π/2ue−u, such
that the Ising couplings become

d = 3, J(x) = − J2
0

2π
e−(||x||/ξeff)

||x|| cos
(
kJ · x

)
. (30)

Hence, we identify a Yukawa-type interaction between the
qubits (i.e., screened Coulomb decay) [126]. In fact, the
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analogy becomes clearer when writing the spins in terms
of fermions via a Jordan-Wigner transformation [127],
since the Ising-Schwinger source term, Eq. (5), becomes
a Yukawa coupling between the fermionic charge den-
sity and a propagating scalar field, although the former
would be spinless and static rather than that described by a
relativistic Dirac field.

We note that the range of the Yukawa interaction,
Eq. (30), is controlled by the inverse of the effective mass,
Eq. (26), and can thus be tuned by placing the frequency
of the harmonic source ωJ closer or further from the bare
mass m0. If kJ = 0, the spin couplings are always negative,
and would thus describe an Ising-Yukawa ferromagnet.
Note that, as advanced above, the Ising field need not be
densely distributed over the whole Minkowski space time,
but can be arranged at

δε(x) = ω0

n∑
i=1

δd(x − xi). (31)

In this situation, ferromagnetic couplings can also be
achieved for a harmonic source with nonzero momentum
if the qubits are arranged in a plane or line orthogonal
to the plane wave kJ ⊥ (xi − xj ). Likewise, if the qubits
are contained in a region much smaller than the harmonic
wavelength kJ · (xi − xj ) ≈ 0, the interactions are approx-
imately ferromagnetic. Away from these conditions, the
Yukawa-decaying couplings will alternate between ferro-
magnetic and antiferromagnetic depending on the qubit
distance, which can lead to magnetic frustration.

For the D = 1 + 1 Klein-Gordon field ν = −1/2, the
modified Bessel function is K−1/2(u) = K1/2(u), such that

d = 1, J(x) = −J2
0

e−(|x|/ξeff)

meff
cos

(
kJ ,xx

)
. (32)

The situation is similar to the one discussed above,
albeit with exponentially decaying spin-spin interactions.
Whereas for small distances ||x1 − x2|| 
 ξeff, we get a
Coulomb-type decay in three dimensions J(x1 − x2) ∝
1/||x1 − x2||, which gets exponentially screened at larger
spatial separations, the one-dimensional case, Eq. (32), is
always described by exponentially decaying interactions
regardless of the distance.

Finally, for the D = 2 + 1 scalar field ν = 0, the mod-
ified Bessel function cannot be expressed in terms of
elementary functions. In this case, one finds

d = 2, J(x) = −J2
0

π
K0

( ||x||
ξeff

)
cos

(
kJ · x

)
. (33)

For small spatial separations ||x1 − x2|| 
 ξeff, there are
logarithmically decaying couplings J2(x1 − x2) ≈ −γ +
log(2ξeff/||x1 − x2||), where γ ≈ 0.577 is Euler’s con-
stant. Conversely, for long distances ||x1 − x2|| � ξeff,

one obtains a power-law coupling that gets exponentially
screened.

Before concluding this section, let us also note that
one can include quantum fluctuations in the effective Ising
models by modifying the perturbation in Eq. (5) to

Ṽ → V̂ =
∫

ddx
[−J (x)φ(x)Z(x)− Ht(x)X (x)

]
, (34)

where Ht(x) is a new coupling-strength density. We
assume that the Ising fields are distributed in a certain
spatial arrangement xi ∈ �s, such that

Ht(x) = 2ht(x) cos(ω0t), ht(x) = ht

n∑
i=1

δd(x − xi),

J (x) =
n∑

i=1

J0 sin
(
ωJ t − kJ · xi

)
δd(x − xi), (35)

where the couplings J0, ht have now units of mass and
energy. The nontrivial part of the time-evolution operator,
considering that ht 
 2ω0, can now be described as

UV̂J
= T

{
e+i

∫
dt
∑

i

[
J (t,xi)φH (t,xi)Z(t,xi)+htX (t,xi)

]}
, (36)

We can now repeat the previous procedure to calculate the
evolution operator, but differences will arise as the Mag-
nus expansion is no longer exact at second order, Eq. (A7).
Nonetheless, the additional terms can be neglected if the
coupling constraint, Eq. (60), is changed so that it encom-
passes both couplings

|J0|, |ht| 
 (ωk − ωJ ), (ωk + ωJ ). (37)

We then arrive at a long-range version of the transverse-
field quantum Ising model [128,129], namely

Heff = 1
2

n∑
i=1

n∑
j =1

Jij Z(xi)Z(xj )− ht

n∑
i=1

X (xi), (38)

where the spin-spin couplings Jij = J(xi − xj )J 2
0 /J

2
0 have

units of mass and energy, and are thus controlled by the
D-dimensional Euclidean Green’s function (29). In anal-
ogy to the nearest-neighbor models [128,129], there is
a competition between magnetic phases that break spon-
taneously the Z2 symmetry P1 = �xiX (xi) that inverts
Z(xi) → P1Z(xi)P1 = −Z(xi); and paramagnetic phases
where all spins point in the direction of the external trans-
verse field ht. Neglecting the possible frustration due to the
periodic alternation between ferro and antiferro couplings,
we expect that the exponential screening at large distances
will lead to critical theories in the Ising universality class,
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which have the same scaling behavior as the corresponding
nearest-neighbor models.

Let us now switch to the discussion of the simpli-
fied quantum sensors of the massive Klein-Gordon field.
Regardless of the phase diagram of the Ising spins in the
thermodynamic limit n → ∞, if one is interested in the
characterization of the underlying scalar field, a pair of
Ising spins can suffice as sensor qubits n = 2 (see Fig. 2),
providing a much simpler scheme than the one presented
above for the full generating functional. First of all, we
do not require initializing the system in a multipartite
entangled state, but instead in |�0〉 = |0〉 ⊗ |+i〉 ⊗ |+j 〉,
where we recall that |0〉 is the Klein-Gordon vacuum,
and |+i〉 = (|↑xi〉 + |↓xi〉)/

√
2 is a coherent superposi-

tion for each of the Ising probes. Secondly, instead of
measuring the global parities, Eq. (13), it will suffice
to measure a single-qubit observable in the Pauli basis,
e.g., X (xi), in the time-evolved state |�f 〉 = U[tf , (tf −
t0)/2]X (xi)X (xj )U[(tf − t0)/2, t0] |�0〉. Setting ht = 0,
this time evolution yields

〈�f | X (xi) |�f 〉 = 〈�0| U†
ṼJ

X (xi)UṼJ
|�0〉

= cos
[
2Jij (tf − t0)

]
, (39)

such that one could extract the spin-spin coupling strength
Jij from the real-time evolution of the transverse magne-
tization. We note that these periodic oscillations resemble
the dynamics of the global parity observables encoding the
full connected generating functional (15). The bare mass of
the Klein-Gordon field m0 and the bare coupling J0 could
be inferred by repeating the same scheme for different fre-
quencies of the harmonic source ωJ , as this should change
the range of the interaction and lead to different oscillation
frequencies. With this information, one can reconstruct
Z0[J ] in Eq. (11).

Note that, in addition to dispensing with the need of
preparing large multipartite entangled states, the previous
evolution is of the spin-echo type [130], and will thus
refocus the dephasing caused by external fluctuations that
affect the qubits on a slower timescale than each of the sin-
gle experimental runs. In contrast, spin echos or any other
dynamical-decoupling sequence [131], cannot be incorpo-
rated in the generating-functional sensing scheme of Ref.
[53], as it would also refocus some of the signals that are
required to estimate the derivatives. We conclude that the
harmonic scheme is not only simpler than the impulsive
one, but also more robust to noise.

III. SELF-INTERACTING SCALAR FIELDS
COUPLED TO Z2 FIELDS

In this section, we describe the previous sensing pro-
tocols in the presence of self-interactions in the massive
Klein-Gordon field, which leads to the so-called λφ4

QFT, and can be addressed by the use of functional-
integral methods. In Appendix B, we review this functional
approach for the full generating functional of the inter-
acting scalar field Z[J ] in the absence of the Ising spins.
This yields a graphical representation of Z[J ] in terms of
Feynman diagrams, where the logarithm of the full gen-
erating functional can be expressed as a series in even
powers of the source functions weighted by the renormal-
ized connected propagators. To extend these results to the
full problem with Ising-Schwinger sources, we describe in
Sec. III A a spin-path integral representation of the ampli-
tude of propagation between two arbitrary states of the
Ising and scalar fields, which leads to an effective scalar-
σ QFT. In Sec. III B, we show that the λφ4 bosons act
as mediators of Ising-type interactions between 2n spins,
each of which is controlled by the renormalized 2n-point
connected propagator of the self-interacting scalar bosons.
For harmonic sources in the specific regime of the previ-
ous section, the leading term leads again to a quantum Ising
Hamiltonian with long-range couplings, the range of which
now accounts for all the possible scattering events that the
boson can undergo while propagating between the corre-
sponding pair of Ising spins. This shows that the sensing
scheme of Sec. II, when applied to the full interacting case,
can gain information about the renormalization effects, and
thus probe this QFT in a novel manner.

A. Spin-path integral and scalar-σ field theory

As discussed in the previous section, the real Klein-
Gordon field is the simplest model where one can introduce
key concepts and techniques to be used later in more
complicated QFTs. For instance, including quartic self-
interactions in the Klein-Gordon field, Eq. (1), leads to the
λφ4 model

H = H0 + Vint, Vint = λ0

4!
φ4(x), (40)

where λ0 is the bare coupling strength. This model has
played a leading role in the development of QFT. On
the one hand, it is a cornerstone in our understanding
of the spontaneous breakdown [132,133] and restoration
[134,135] of symmetries in QFTs. This model has also
been a neat playground to understand the conceptual impli-
cations of the renormalization of QFTs [106,136], such as
the role of fixed points controlling the long-wavelength
properties, finding many applications in the theory of phase
transitions and critical phenomena [137]. Finally, we note
that the λφ4 model has also been a cornerstone in the con-
structive approach to QFTs, allowing to prove rigorous
results for various dimensions [138–144].

In Appendix B, we review the effects of the λφ4 interac-
tions using the path-integral formalism for the generating
functional (B23). Paralleling our approach for the free
Klein-Gordon field, we can use this discussion as a guide
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to understand how the self-interactions affect the effective
Ising models, Eq. (38), when considering harmonic Ising-
Schwinger sources. As reviewed in the Appendix, to get
the path-integral formulation (B3) of the full generating
functional Z[J ] (B2), one uses the resolution of the identity
in the field and momentum orthonormal basis of the scalar
field. To include the Ising-Schwinger sources and the trans-
verse field, Eq. (34), one may complement this basis with
that of spin coherent states [21,145], defined through the
action of the ladder operators on a fiducial state

|�(x)〉 = etan[θs(x)/2]eiφs(x)S+(x) |S, −S〉x . (41)

Here, |S, −S〉x = |↓〉x, and S+(x) = 1
2 [X (x)+ iY(x)] for

our original qubits S = 1/2, Eq. (5), but can be readily gen-
eralized to any spin-S representations of the su(2) algebra.
In addition, �(x) is a unit vector field constrained to reside
on the S2 sphere, which can thus be characterized by the
polar θs(x) and azimuthal φs(x) angles at each space-time
point.

An important difference with respect to the aforemen-
tioned field and momentum basis is that the coherent states
are not orthogonal, but satisfy instead

〈�(x1)|�(x2)〉 = eiS�[�(x1),�(x2),ez]
(

1 + �(x1) · �(x2)

2

)S

.

(42)

Here, �[�(x1), �(x2), ez] stands for the area of the spher-
ical triangle with vertices determined by the tips of the
coherent-state unit vectors and the north pole of the
S2 sphere. These scalar products appear after splitting
in infinitesimal pieces the corresponding time-evolution
operator (36), where the fields now evolve in the Heisen-
berg picture with respect to the unsourced λφ4 QFT (see
Appendix B). Paralleling the path-integral construction for
this scalar-field theory, we introduce the resolution of the
identity of the field and momentum and coherent-state
basis at nearby fixed instants of time, and obtain a func-
tional integral for the λφ4 QFT coupled to Ising fields
via Ising-Schwinger sources. Following Ref. [21], for each
spatial point, we find that the amplitude of the above over-
lap contributes to the kinetic energy of a nonrelativistic
particle moving along the trajectory �(t, x) on the unit
sphere. However, when recovering the continuum-time
limit, the mass of this particle vanishes, and the trajectory
depends only on the accumulated phase, Eq. (42), and the
source couplings to J (x), Ht(x). The latter can be obtained
through the coherent-state expectation values of the
Ising-Schwinger term (34), dt〈�(t, xi)|V̂|�(t + dt, xi)〉 ≈
dt
[
J (t, xi)φH (t, xi)2S�z(t, xi)+ ht(t, xi)2S�x(t, xi)

] + O
(dt2). In addition, the accumulated phase, Eq. (42), for
the whole time evolution can be expressed as the inte-
gral of a Berry connection along the trajectory �(t, x),

which is equivalent to the Aharonov-Bohm phase acquired
by a test particle moving in the background gauge field
generated by a monopole of charge S situated at the ori-
gin of S2. Remarkably, for the Euclidean path integral
that arises from the finite-temperature T partition func-
tion of a spin model, these trajectories must be closed
�(0, xi) = �(1/T, xi), and the integral of the Berry con-
nection can then be expressed as a topological Berry phase
or, equivalently, as a Wess-Zumino θ term. This term plays
an important role for both Heisenberg ferromagnets [21]
and antiferromagnets [146,147].

In our case, given the form of the coupling, Eq. (34),
it suffices to parametrize the dynamics of the spins using
coherent states along a great circle of S2, i.e., setting
φs(x) = 0 in Eq. (42). Accordingly, the Berry connection
vanishes, and there is no accumulated phase. The ampli-
tude of propagation of the full field theory between an
arbitrary pair of states in this basis finds the following
path-integral representation:

〈{ϕ(x), �(x)}|UV̂J
|{ϕ(y), �(y)}〉

=
∫

BC
D[ϕ, �]δ(�2 − 1)eiS. (43)

Here, we introduce the action

S =
∫

dDx
[
L0 − Vint(ϕ)− V̂J (ϕ, �)

]
, (44)

where we get the Klein-Gordon Lagrangian (B4) with the
λφ4 interactions, Eq. (40), and an additional spin-scalar
coupling

V̂J = −J (x)2Sϕ(x)�z(x)− ht(x)2S�x(x). (45)

Note that the spin-scalar path integral (50) has an inte-
gration measure with a constraint that enforces the vector
fields to lie on S2, and one integrates over all possible
fields consistent with (BC), namely the boundary condi-
tions associated to the initial and final spin configurations
of the asymptotic states.

In the following, we implement the constraint on the
vector fields explicitly by making the following substitu-
tion on the symmetry-breaking and transverse components

σ(x) = �z(x), π(x) =
√

1 −�2
z (x) =

∞∑
�=0

g�σ 2�(x),

(46)

where g� = (−1)�
( 1

2
�

)
, and

(
α

�

) = α(α − 1) · · · (α − �+
1)/�! is the generalized binomial coefficient. Upon substi-
tution, the action, Eq. (44) can be rewritten as a scalar-σ
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model

S =
∫

dDx
[
L0 − Vint(ϕ, σ)+ Js(x)σ (x)ϕ(x)

]
, (47)

with a nonlinear part that includes the self-interactions of
the ϕ field, but also those of the σ field

Vint(ϕ, σ) = λ0

4!
ϕ4(x)+

∑
�

h�(x)σ 2�(x). (48)

Here, we define the couplings

Js(x) = 2SJ (x), h�(x) = 2Sg�ht(x). (49)

This QFT partially resembles a nonlinear σ model [148],
but note that, in this case, the σ fields are nonpropagating.
Nontrivial effects come from the coupling to the interacting
scalar bosons, and hence the name scalar-σ model.

This coupled QFT has a global Z2 × Z2 symmetry by
which any of the scalar or σ fields gets inverted. In the
presence of the Ising-Schwinger source term, this sym-
metry is reduced to Z2 acting simultaneously on both
fields [ϕ(x), σ(x)] → [−ϕ(x), −σ(x)]. Note that sponta-
neous symmetry breaking (SSB) of a discrete symmetry
at zero temperature can take place in any dimension d, and
is characterized by the appearance of a vacuum expecta-
tion value in any of the fields. This is the field-theoretic
interpretation of the SSB in the effective quantum Ising
model, Eq. (38), which would lead to the ferromagnetic
ordered mentioned in the previous sections. In that case,
SSB could occur only in the σ sector, as the scalar sector is
described by free Klein-Gordon fields that do not support
a nonzero vacuum expectation value. Even if the generic
λ0φ

4 field theory can support this scalar SSB channel, we
do not explore it in this paper for the reasons outlined in
Sec. IV B, where we connect to trapped-ion experiments.

B. Renormalized long-range quantum Ising models

In this subsection, we start from the scalar-σ field the-
ory, Eq. (47), and exploit functional methods to find an
effective description of the unitary dynamics that governs
the model of scalar λφ4 fields coupled to the Ising spins.

We note that the action of the scalar-σ model, Eq. (47),
is formally equivalent to the standard functional descrip-
tion of the self-interacting Klein-Gordon field in Eq. (B3)
of Appendix B, provided that one substitutes the sources
J (x) → Js(x)σ (x). If we are interested in a situation
where, as customarily, the scalar field evolves in time
from the vacuum into the vacuum, we can then fol-
low a similar approach as described in Appendix B
to express the amplitude of propagation T�(y)→�(x) =
〈0, {�(x)}|UV̂J

|0, {�(y)}〉 as follows:

T�(y)→�(x) =
∫

BC
Dσ

e−i
∫

dDxVint(−iδJs(x)σ (x),σ(x))Z0[Jsσ ]

e−i
∫

dDxVint(−iδJs(x)σ (x),σ(x))Z0[Jsσ ]
∣∣
0

,

(50)

where we use a short-hand notation for the functional
derivatives δJs(x)σ (x) = δ/δJs(x)σ (x), and (BC) now refers
only to the initial and final configurations of the σ

field, which are determined by the asymptotic spin states
of the transition amplitude. Note that, in this expres-
sion, the free generating functional Z0[J ] → Z0[Jsσ ]
has the same form as Eq. (11), but now describes
the mediated couplings between σ fields. In addition,
the self-interaction potential must include the σ field
nonlinearities (48).

This expression can be treated using perturbation theory,
and admits a description in terms of Feynman diagrams.
Note that, in principle, the new interaction term, Eq. (48),
not only includes the scalar vertex with four legs, but
also all possible σ vertices involving 2n legs. These addi-
tional vertices could in principle combine into a wider
landscape of Feynman diagrams with respect to those
arising in the pure λφ4 theory discussed in Appendix B,
including additional insertions of the σ vertices. However,
the constraints in Eq. (37), which allowed us to neglect
the terms of the Magnus expansion beyond second-order,
Eq. (A7), stemming from higher-order nested commuta-
tors, are equivalent to considering only Feynman diagrams
with the σ vertices at tree level, i.e., neglecting the com-
bination of the scalar and σ scattering processes in the
diagrams. Accordingly, the diagrammatic description of
this transition amplitude, Eq. (50), is

ii

BC (51)

This equation should be read as follows: the Ising-
Schwinger source terms, proportional to the σ fields,
are depicted by arrows ⇑ = Js(x)σ (x) to represent the

underlying spins at different space-time locations x. The
blobs = λ0 stand for interaction vertices with the bare
quartic coupling. Solid lines that join an arrow and a
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blob should be translated into ×−− = 
m0(x − z), and
thus involve the free Feynman propagator of the scalar
field, Eq. (10), from the point x of the σ field to the self-
interaction vertex at z. Likewise, solid lines connected to
the same blob stand for interaction loops that should be
translated for © = 
m0(0), while those connecting two
distant blobs must be substituted by the scalar-field propa-
gator between the corresponding space-time points −− =

m0(z1 − z2). For each of the above diagrams, we should
integrate over all possible space-time locations of the
sources

∫
dDxi, and those of the intermediate interaction

vertices
∫

dDzi.
Note that the arrows in Eq. (51) are drawn in differ-

ent directions to emphasize that, contrary to the standard

Schwinger sources, the dynamics of which is fixed exter-
nally, the new Ising-Schwinger sources involve σ fields
with their own dynamics. In particular, from the perspec-
tive of Sec. II B on the free Klein-Gordon field coupled
to Ising spins, we know that there are boson-mediated
processes where the spins, when initialized in a particu-
lar basis, can be flipped dynamically. Additionally, if the
transverse field is nonzero, there will be quantum fluctua-
tions that will also flip the spins in a different basis. Our
choice of alternating directions of the arrows ⇑, ⇒, ⇓, ⇐,
thus tries to depict this inherent spin dynamics. Addition-
ally, in Eq. (51), the free generating functional should be
substituted for Z0[Jsσ ] → Z̃0[Jsσ , h�], which now includes
the Ising-Schwinger sources and the tree-level σ vertices

Z̃0 = e−(1/2) ∫ dDx1
∫

dDx2Js(x1)σ (x1)
m0 (x1−x2)σ (x2)Js(x2)+i
∫

dDx
∑
� h�σ 2�(x). (52)

The graphical representation in terms of Feynman dia-
grams and Z̃0 in Eq. (51) then has a clear interpretation.
Distant Ising spins can virtually excite the bosonic field
via the source coupling, and effectively interact by a long-
range coupling mediated by the exchange of a virtual
scalar boson, Eq. (52). Additionally, these spins are also
subjected to quantum fluctuations captured by the nonlin-
earities of the σ vertices, Eq. (52). The Feynman diagrams,
Eq. (51), show that this virtual exchange process is not
entirely captured by the free terms, Eq. (52), as the scalar
field also has self-interactions, and the mediating boson
may get scattered through various processes as it propa-
gates between the spins, as depicted in the upper inset of
Fig. 2.

In addition to modifying the interactions between pairs
of spins, Eq. (52), self-interactions introduce further possi-
bilities where 2n spins also get effectively coupled. In the
fifth diagram of Eq. (51), we show that a 4-spin interaction
can occur by the action of two Ising-Schwinger sources
that virtually excite a pair of bosons, which then scatter
into another pair of bosons that carry the interactions to a
different pair of spins. Note that these two-boson mediated
processes also allow for further scattering of the carriers
due to the self-interaction of the scalar field, as described
by the following diagrams of Eq. (51) and depicted in the
upper inset of Fig. 3.

We can turn this qualitative explanation of the medi-
ated interactions into a quantitative analysis by handling
the perturbative series in analogy to our exposition of
Appendix B. From now onwards, for our spin S =
1/2 case, we make no distinction between the bare
and spin sources since Js(x) = J (x). The amplitude of
propagation between two different σ -field configurations

can be written in a condensed form that considers all of
the scattering processes of the bosonic carriers mentioned
above. In summary, these scattering events lead to addi-
tive and multiplicative renormalizations of the bare mass
m0 → mr, and the bare coupling strength λ0 → λr. As
discussed in Appendix B, using the power series of the
self-energy �(k) = �(0)+ k2∂k2�(k)|k2=0 + · · · to sec-
ond order in the coupling strength, one can obtain the
so-called tadpole and sunrise contributions to �m0,λ0(0) =
�
(1,td)
m0,λ0

+�
(2,td)
m0,λ0

+�
(2,sr)
m0,λ0

, namely

�
(1,td)
m0,λ0

= λ0

2

∫
k1


̃m0(k1),

�
(2,td)
m0,λ0

= −i
λ2

0

4

∫
k1

∫
k2


̃2
m0
(k1)
̃m0(k2),

�
(2,sr)
m0,λ0

= −i
λ2

0

6

∫
k1

∫
k2


̃m0(k1)
̃m0(k2)
̃m0(k1 + k2),

(53)

as well as the sunrise contribution to the wave-function
renormalization z−1

m0,λ0
= 1 − ∂k2�(k)|k2=0, namely

∂�(2,sr)

∂k2

∣∣∣∣
0

= λ2
0

6

∫
k1

∫
k2


̃m0(k1)
̃m0(k2)
̃
2
m0
(k1 + k2).

(54)

Accordingly, to leading order, the renormalized mass reads

m2
r = [

m2
0 +�m0,λ0(0)

]
zm0,λ0 , (55)

whereas the source functions become

Jr(x) = J (x)
√

zm0,λ0 . (56)

020352-13



MARTÍN-VÁZQUEZ, AARTS, MÜLLER, and BERMUDEZ PRX QUANTUM 3, 020352 (2022)

Unentangled probesUnentangled probes

FIG. 3. Scheme of the 4-spin interactions for the harmonic sensors: four distant Ising spins at positions x1, ·, x4 are coupled to the
real scalar field φ(t, x) locally by harmonic Ising-Schwinger sources J (t, xi) ∝ sin(ωJ t − kJ · xi). As a result, there are 4-spin Ising
interactions mediated by the scalar bosons, the strength of which will be related to a connected four-point propagator. In the upper
inset, we show that in the presence of quartic couplings, these interactions will include all possible scattering events that involve two
incoming and two outgoing virtual bosons, together with internal loops due to the self-interaction vertices.

Finally, the interaction strength also gets renormalized due to the last diagram of Eq. (51), leading to

λr =
(
λ0 − i

3λ2
0

2

∫
k1


̃2
m0
(k1)

)
z2

m0,λ0
. (57)

With these renormalizations, the amplitude of propagation in Eq. (51) can thus be compactly rewritten as

T�(y)→�(x)

=
∫

BC
Dσe−(1/2)∫ d2DxJr(x1)σ (x1)
mr (x1−x2)σ (x2)Jr(x2)−(i/4!)

∫
d4DxJr(x1)Jr(x2)σ (x1)σ (x2)G

(4,c)
mr ,λr (x1···x4)σ (x3)σ (x4)Jr(x3)Jr(x4)+i

∫
dDx

∑
� h�σ 2�(x),

(58)

where we readily identify the quadratic and quartic long-
range interactions of the σ fields mediated by the scalar
bosons. Note that, as discussed in Appendix B, one could
consider higher-order terms in the external sources, which
would introduce 2n-spin interactions with n ≥ 3.

We now argue that, among all the possible boson-
mediated interactions for harmonic Ising-Schwinger
sources, Eq. (20), which include these 2n-spin interactions,
all but the 2-spin couplings will be negligible. Since the
source amplitude gets renormalized J0 → J0,r via Eq. (56),
the renormalized harmonic Ising-Schwinger sources read

Jr(x) = J0,r sin(kJ x) = J0,r sin
(
ωJ t − kJ · x

)
. (59)

To estimate the strength of the 2n-spin interactions, we
recall our discussion of Sec. II B, and the importance of
tuning the sources below resonance to avoid dissipative
processes where propagating bosons instead of virtual ones
get excited. The nonresonance condition is now renor-
malized ωJ � mr � ωk,r = (k2 + m2

r )
1/2. As discussed in

the free case, the source couplings should also be con-
strained by Eq. (60) to effectively decouple the dynamics
of the Ising and scalar fields. This leads to a unitary evo-
lution where the only nontrivial part was encoded in the
Ising Hamiltonian (23). The renormalized version of the
constraint (60) reads

J0,r 
 (ωk,r − ωJ )ddk < (ωk,r + ωJ )ddk, (60)
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which guarantees that the backaction of the Ising spins
onto the λφ4 field is negligible and that, if initialized
in the vacuum (or any other state), the scalar field will
remain in such a vacuum during the whole evolution.
The discussion of Sec. II B then proceeds by perform-
ing explicitly the time integrals involving the harmonic
sources in the forward and backward directions of the
Feynman propagator. As a result of these integrations
and the coupling constraint (60), one can neglect rapidly
oscillating terms, and describe the evolution unitary by
a time-independent effective Hamiltonian (23). We see
in Eq. (24) that the long-range spin-spin coupling scales
with J0 · J0/(ωk − ωJ )(ωk + ωJ ), which is already small
according to the constraint (60). Hence, the dynamical
effects of these interactions can only be observed by let-
ting the system evolve for sufficiently long times. For
the current renormalized equations (58), we get a similar
behavior, and one can check that the additional 4-σ term in
Eq. (58) also contributes to the time-independent Hamil-
tonian, but this time with 4-spin interactions that scale
with terms like J0,r · J0,r · J0,r · J0,r/(ωk1,r ± ωJ )(ωk2,r ±
ωJ )(ωk3,r ± ωJ )(ωk4,r ± ωJ ). These terms should be inte-
grated over in momentum space with a total momentum
conservation, and will lead to spin interactions between
four distant spins with some specific long-range coupling.
In any case, Eq. (60) shows that these 4-spin interactions
will be negligible in comparison to the 2-spin terms, and
more so if one considers higher-order 2n-spin interactions
for n ≥ 3.

Once arrived at this point, the last step is to convert
the leading contribution to the amplitude of propagation
from the path-integral formulation (58) onto a canonical
time-evolution operator, reversing the steps of the path-
integral construction. Altogether, when considering that
the Ising spins occupy only a certain spatial arrangement,
Eq. (35), we arrive at the final result: the full time evolution
can be represented by the two concatenated unitaries in
Eq. (19), where the nontrivial dynamics of the Ising spins
is controlled by a renormalized long-range quantum Ising
Hamiltonian

Heff,r = 1
2

n∑
i=1

n∑
j =1

J r
ij Z(xi)Z(xj )− ht

n∑
i=1

X (xi). (61)

Here, the spin-spin couplings have a range that is con-
trolled by the dimensionally reduced Euclidean propagator

J r
ij = −2J0,rGE

meff,r
(xi − xj ) cos

[
kJ · (xi − xj )

]
J0,r, (62)

with an effective renormalized mass given by

m2
eff,r = m2

r − ω2
J . (63)

Therefore, tuning the frequency ωJ of the harmonic source,
Eq. (59), closer to, or further from, the renormalized mass

mr of the scalar bosons, one will be able to control the
range of the Ising interactions, and extract the information
about the renormalization of the scalar field using the sens-
ing method of Sec. II B. Let us recall again that this mass
gets additive and multiplicative renormalizations, Eq. (55),
from all the intermediate scattering events, Eq. (51), of the
bosons mediating the Ising interaction. We finally note that
the spin-spin couplings scale with the square of the source
amplitudes J0,r, and that these terms also get a multiplica-
tive renormalization described in Eq. (56). Typically, for
the decoupled λφ4 QFT, such source renormalizations do
not have any physical consequence, as one is ultimately
interested in the renormalized propagators. The generat-
ing functional in these cases is a mathematical tool, and
it suffices to take functional derivatives with respect to
these new sources, or directly assume that the sources
couple to the renormalized fields. In contrast, for the cur-
rent spin-scalar model, the renormalization of the sources
has an impact on the strength of the spin-spin couplings,
which is relevant as these control the timescale of the spin
dynamics.

Considering Eq. (61) and our previous discussions, the
new sensing protocol that monitors the real-time oscilla-
tions of a pair of Ising spins coupled to the λφ4 QFT will
allow us to recover the renormalized parameters of the field
theory. Once we have them, one can reconstruct the gener-
ating functional in Eq. (B23), in this case to second order
in the sources

Z[Jr] = e−(1/2) ∫ dDx1
∫

dDx2Jr(x1)
mr (x1−x2)Jr(x2). (64)

We note that, if the timescales of the ever-present exper-
imental noise on the qubits is sufficiently low, it may
also be possible to devise schemes that sense the effect of
the 4-spin (generally 2n-spin) interactions, gaining access
to higher-order propagators and the renormalized quartic
coupling.

We close this section by noting that we have not men-
tioned any ultraviolet (UV) cutoff of the QFT so far,
although it is implicit in the discretized drawings of
Figs. 1–3. Such a cutoff is not required for the results pre-
sented in Sec. II on the effective Ising models mediated
by free Klein-Gordon bosons. In this case, the only UV
diverging quantity is the zero-point energies of the fields.
However, as soon as λφ4 interactions are included, a dif-
ferent kind of UV divergence appears, as we see that the
renormalizations involve certain Feynman diagrams, such
as the tadpole term in Eq. (53), which includes the prop-
agator at infinitesimally short distances 
m0(0) and thus
displays such UV divergences. The QFT thus needs to be
regularized by the introduction of a cutoff

|kμ| ≤ �c. (65)

As a consequence, the renormalized parameters (55)–(57)
will depend on the cutoff scale. The central result of the
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renormalization group is that the bare coupling constants
of the QFT, m0, λ0, J0 in this case, will flow with the cut-
off scale and give rise to physical renormalized quantities
mr, λr, J0,r that no longer depend on the arbitrary cutoff. As
we discuss below, in certain situations, this UV cutoff is
not arbitrary but fixed by the physical system at hand (e.g.,
physical lattice). In this case, the renormalization group
allows us to extract the universal long-wavelength proper-
ties, and find a predictive field theory valid at low energies
[149]. We discuss this in more detail in the following
section.

IV. RENORMALIZATION OF SOUND IN
TRAPPED-ION CRYSTALS

In this section, we present a detailed discussion on how
the previous results can be applied to a long-wavelength
description of crystals of atomic ions confined in radiofre-
quency traps. This description can be formalized within
the framework of the theory of elasticity for the quantized
sound waves of crystals, which is reviewed in Appendix C,
where we also comment on the main obstacles for a
solid-state implementation of the Ising-Schwinger sensing
scheme introduced in this work. We show in Sec. IV A
that the transverse sound waves of harmonic trapped-ion
crystals subjected to state-dependent forces offer a neat
realization of the massive Klein-Gordon field coupled to
Ising spins. This allows us to apply the results of Sec. II B,
connecting the predicted long-range Ising models with pre-
vious works on phonon-mediated spin-spin interactions
between trapped ions. This clarifies the distance depen-
dence of the latter, and shows that our theory is a valid
long-wavelength description of trapped-ion crystals under
state-dependent forces. In Sec. IV B, we abandon the har-
monic limit by approaching a structural phase transition of
the ion crystal, where nonlinear effects lead to scattering of
the quanta related to the sound waves, namely the phonons,
and requires us to use the renormalization predictions of
Sec. III B. In particular, in Sec. IV C, we use an explicit
integration of the renormalization-group flow equations in
the limit of small quantum fluctuations to predict the renor-
malization of the range of the Ising spin-spin interactions.
We conclude in Sec. IV D by showing that additional para-
metric modulations of the trap frequencies can give a knob
to control the amount of quantum fluctuations, exploring
regimes that go beyond the previous perturbative predic-
tions, where the results of the proposed QS would be very
interesting.

A. Harmonic trapped-ion crystals: rigidity, massive
Klein-Gordon fields, and effective Ising models

In this section, we discuss the realization of the previous
ideas using crystals of trapped atomic ions [53]. Clouds
of singly ionized atoms can be confined in finite regions
of space for hours or days using storage rings or Penning

and Paul traps [150]. These traps are held inside ultrahigh
vacuum chambers, and additionally shielded from exter-
nal fluctuating fields, such that one can explore quantum
many-body properties of the ion cloud in a pristine and
controlled environment. In this way, one can observe the
plasmalike behavior of large thermal clouds [151], or focus
on ions in medium- to small-sized clouds. In the latter con-
text, crucial progress in our understanding of laser cooling
during the past decades [152–156] has allowed the devel-
opment of various techniques [157] to reach ever-lower
temperatures. At these ultracold temperatures, the ions
crystallize as a result of the competition between trapping
and Coulomb forces [158–162], leading to the so-called
Coulomb clusters and crystals [151].

In the following, we focus on linear Paul traps, a type of
radiofrequency trap that confines the ions in stable linear
configurations along the trap symmetry axis [160]. These
kinds of traps have been exploited, among other things,
for the manipulation of individual quantum systems [163],
the development of frequency standards based on optical
clocks [93], and the demonstration of various quantum-
computing algorithms [13–15]. In this configuration, the
microscopic description of a single trapped ion [164], or
its extension to a collection of them [165], shows how
slow secular vibrations with a typical timescale set by the
inverse of the trap frequencies {ωα}α=x,y,z get decoupled
from a fast driven motion synchronous with the external
radiofrequency field �rf � ωα .

For the ion crystal, the long-wavelength description
of the collective secular dynamics [166] resembles the
elastodynamical theory of phonons in a one-dimensional
(1D) solid-state crystal, as reviewed in Appendix C, albeit
with important differences that we now stress. On the
one hand, while strict 1D crystals are thermodynamically
unstable, the ion chains are dynamically driven inhomoge-
neous clusters of ions, such that there is no conflict with
the spontaneous breakdown of translational symmetry in
static situations [167–169]. However, due to the separation
of timescales mentioned above, the much slower secular
motion can be discussed using static equilibrium tools.
Secondly, whereas 1D crystals can only support compres-
sional longitudinal waves (C1), ions in a Coulomb chain
can vibrate in both longitudinal and transverse directions
with respect to the trap axis. One of the key advantages
of trapped-ion crystals with respect to the solid state is
that these different vibrations can be selectively cooled or
excited by controlling both the frequency and the propa-
gation direction of additional laser beams. This contrasts
the typical situation in solids, where a macroscopic ther-
mal strain excites all modes simultaneously. The last key
difference with respect to the elastodynamical description
of sound waves in solids of Appendix C is that, contrary
to the screened interatomic potentials of solids, which are
in accordance with the form of the coarse-grained stress
forces, trapped-ion crystals are subjected to long-range
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Coulomb potentials. These long-range forces will lead to
important differences in the context of the present work.
Additionally, trapped ions allow one to tune the analog of
the bulk and shear moduli Ke,μr, which characterize the
stiffness and rigidity of the crystal to external strain and, in
turn, determine the effective speeds of sound as discussed
in the Appendix in Eqs. (C1) and (C4). More importantly,
trapped-ion crystals allow to control microscopically the
importance of nonelastic corrections, providing a neat
route to explore renormalized Ising interactions mediated
by λφ4 fields, as discussed in the following subsection.

Let us start by describing in detail the first differ-
ences, which can already be understood by inspecting the
trapped-ion chain in the secular harmonic approximation
[170,171], and the realization of phonon-mediated Ising-
type interactions thereof [34,172], making contact with
Sec. II. In the secular approximation, there is a competition
between the harmonic trapping potential and the Coulomb
repulsion such that, for ωx 
 ωy,ωz, the N trapped ions
arrange in equilibrium positions xi = xiex along the trap
symmetry axis [see Fig. 4(a)]. The position of each ion can
thus be expressed as ri(t) = xiex + ∑

α ui,α(t)eα , where
ui,α(t) represents the small local vibrations around equi-
librium of the ith ion along the αth axis, which can be con-
sidered as a discretized version of the displacement field
uα(t, x) introduced in the coarse-grained elasticity theory,
Eq. (C1). In a harmonic approximation, one expands the
overall potential to second order, and finds that the dynam-
ics of the ion chain can be described by a Hamiltonian of
local harmonic oscillators with long-range couplings

Hh =
∑
i,α

(
1
2

ma(∂tui,α)
2 + 1

2
καu2

i,α

+ 1
4

∑
j �=i

καi,j
(
ui,α − uj ,α

)2

⎞
⎠ . (66)

Here, ma is the mass of the atomic ions, and

κz
i,j = − e2

4πε0

1
|xi − xj |3 = κ

y
i,j = −1

2
κx

i,j , (67)

can be understood as interatomic spring constants with a
dipolar decay due to the net charge of the ions. In addition,

κα = maω
2
α , (68)

is an effective spring constant leading to an elastic local
force that aims at restoring the equilibrium, i.e., ui = 0, ∀i.

Let us note that the elasticity theory of Appendix C relies
on the short-range character of the interatomic forces.
In the solid state, this is typically modeled by restrict-
ing the interatomic springs to nearest neighbors along the
chain κx

i,j → κx
i,i+1, and setting κx = 0 as there is no addi-

tional trapping potential [173,174]. Note that, in order

−1

+1

−8 +8

−1

+1

−8 +8xi/�

xi/�

z i
/
�

z i
/�

FIG. 4. Trapped-ion chain and effective Ising couplings:
(a) equilibrium positions for a chain of N = 50 171Yb+ ions con-
fined in a Paul trap with secular frequencies ωx/2π = 0.1 MHz,
and ωz/2π = 3.75 MHz. The microscopic length scale corre-
sponds to � = 12.7 μm in this case, while the minimum distance
at the bulk of the ion chain is a = 4.4 μm. (b) The blue alternat-
ing arrows depict the lowest vibrational mode in the transverse
branch, the zigzag mode.

to describe a stable crystalline configuration, the nearest-
neighbor couplings must be positive in this case κx

i,i+1 > 0.
For the Coulomb chain, Eq. (66), the situation is richer,
as the nonzero local spring constants κα > 0 allow for sta-
ble configurations with both attractive and repulsive elastic
couplings καi,j ≷ 0. The attractive and repulsive character
can be understood by considering that the ion excur-
sions from equilibrium induce distant electric dipoles Pi =
ui, Pj = uj . These dipoles interact by repelling (attracting)
each other when aligned orthogonal (parallel) to the axis of
separation, here the x axis, yielding κy

i,j , κz
i,j > 0 (κx

i,j < 0).
This has a direct consequence for the collective vibrational
branches, as the lowest longitudinal vibration will corre-
spond to all dipoles lying in parallel, which requires the
ions to vibrate in phase and leads to the so-called center-of-
mass mode [166]. On the other hand, the lowest transverse
vibrations correspond to alternating dipoles along the y,z
axis, such that the ions vibrate out of phase and lead to
the so-called zigzag mode [see Fig. 4(b)]. For reasons
that will become clear below, we restrict to the transverse
vibrations along the z axis in a situation where the cor-
responding trapping potential has been partially relaxed
ωx < ωz 
 ωy.

We can now address the connection of this microscopic
theory, Eq. (66), to a Klein-Gordon field theory, Eq. (1), at
long wavelengths or, equivalently, low energies. As noted
above, the lowest-energy transverse vibration will corre-
spond to out-of-phase displacement of the ions, which can
be associated to a quasimomentum ks = π/a. Here, a is
a characteristic microscopic length scale of the Coulomb
chain [166] that will be proportional to the combination of
microscopic parameters

� = (e2/4πε0maω
2
x)

1/3. (69)

Although we could carry on in the most generic situation
[53], in order to make a more direct contact with the scalar
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QFT of the previous sections, we assume that the ions
are homogeneously distributed in the chain xi = ia with
inter-ion distance, i.e., lattice spacing, a set by the mini-
mum distance between the bulk ions [see Fig. 4(a)]. This
sets directly the aforementioned microscopic length scale,
which turns out to be a � �. The homogeneous approxi-
mation is valid for the bulk of the ion crystal, neglecting
the differences due to inhomogeneities as one approaches
the chain edges [151], which is consistent with the spirit
of our long-wavelength theory. We thus apply periodic
boundary conditions, and leave a numerical study of the
inhomogeneous chain to the end.

As is customary in other long-wavelength descriptions
of condensed-matter problems [175,176], one proceeds by
separating fast and slow variations of the degrees of free-
dom of interest [53,177,178]. The transverse displacement
around the zigzag distortion contains a rapidly oscillating
part, the amplitude of which varies much slower, such that

uj ,z(t) = ae−iksxj φ̃(t, x), ∂tuj ,z(t) = 1
ma

e−iksxj π̃(t, x),

(70)

where φ̃(t, x) is the slowly varying component that will
play the role of the scalar field in the continuum xj → x,
and π̃(t, x) is its conjugate momentum. These operators are
defined in a way that one recovers equal-time commuta-
tion relations in the continuum limit [φ̃(t, xi), π̃(t, xj )] =
i�δi,j /a → i�δ(x − x′), corresponding to the canonical
commutator of the scalar field defined below Eq. (1) for
natural units. Note that, however, we need to work in
SI units as we have not yet identified the quantity that
will play the role of the speed of light. Accordingly,
we must rescale the fields through a canonical transfor-
mation to achieve the correct scaling dimensions of the
Klein-Gordon model, which for D = 1 + 1 dimensions is

φ(t, x) = 1√
maa

φ̃(t, x), π(t, x) = √
maaπ̃(t, x). (71)

Since the field varies slowly, one proceeds by performing a
gradient expansion to capture the long-wavelength physics

φ(t, xj ) ≈ φ(t, xi)+ (xj − xi)∇̂xiφ(t, xi)+ · · · , (72)

where we introduce the discretized derivative

∇̂xiφ(t, xi) = φ(t, xi+1)− φ(t, xi)

a
. (73)

As a consequence of this gradient expansion, the long-
range terms, Eq. (66), contribute effectively to nearest-
neighbor couplings, and lead to a clear similarity with the
solid-state harmonic crystal discussed above. As becomes
clear below, the long-range couplings should decay suf-
ficiently fast such that the corresponding series obtained

by summing over all neighbors converges, and the trun-
cated gradient expansion is thus meaningful. This pro-
cedure improves upon the so-called phononlike approx-
imation [171], where one truncates the dipolar tail to
nearest neighbors without a previous gradient expansion,
and thus yields an incorrect speed of sound. Although
there exist other methods to obtain a more accurate dis-
persion relation at long wavelengths [170,171], the cur-
rent gradient expansion is likely the simplest and most
economic.

Substituting the expressions in Eqs. (70)–(72) in the
Coulomb-chain Hamiltonian (66), we find that the vibra-
tions along the transverse z axis can be described by

Hh = a
∑
x∈�s

1
2

(
c2

t π
2(t, x)

K2�2 + K2
�

2[∇̂xφ(t, x)]2

+ m2
0c2

t K2φ2(t, x)
)

, (74)

where �s stands for the positions of the ions in the chain,
and we introduce the parameters

ct = ωxa

√
�3

a3 log 2, m0 = �ωzz

c2
t

, K = maact

�
, (75)

where the zigzag mode frequency reads

ω2
zz = ω2

z − 7
2
ζ(3)ω2

x
�3

a3 , (76)

and we make use of the Riemann ζ function

ζ(z) =
∞∑

r=1

1
rz . (77)

The physical interpretation of these parameters is now
given. In the continuum limit, one gets a

∑
x∈�s

→ ∫
dx,

such that the term inside the parenthesis of Eq. (74) can
be identified with a Hamiltonian density. After a canonical
rescaling φ(x) → φ(x)/K , π(x) → Kπ(x), this Hamilto-
nian density can be derived from LKG = 1

2 (�
2∂μφ∂

μφ −
m2

0c2
tφ

2), which is the Klein-Gordon Lagrangian density
in SI units. Hence, one clearly sees that ct plays the role
of an effective speed of light, and m0 of an effective
bare mass. To understand the role of the dimensionless
parameter K , we need to use a different normalization
of the fields, Eq. (71), such that the canonical algebra
is [φ(t, xi),π(t, xj )] = iδi,j /a → iδ(x − x′), the scalar field
is dimensionless, and its conjugate momentum has units
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of inverse length. This is achieved by the transforma-
tion φ(x) → φ(x)(ct/K�)1/2, π(x) → �π(x)(K�/ct)

1/2,
which, in the massless limit m0 = 0, leads to the
Hamiltonian density HCB = (�ct/2)

[
(1/K)π2 + K(∇φ)2].

Note that, in this case, this Hamiltonian density corre-
sponds to the field theory of a conformal boson with
Tomogana-Luttinger parameter K [21]. This parameter
appears in the treatment of strongly correlated 1D models
[179,180], where various gapless phases of matter aris-
ing from very different microscopic models [181–183]
share fundamental properties with the ground state of the
Tomonaga-Luttinger model [184,185]. This leads to the
concept of the Tomonaga-Luttinger liquid [186], where,
regardless of the nature of the fundamental constituents,
the relevant low-energy excitations are bosonic particle-
hole pairs with a long-wavelength description in terms of
this conformal boson QFT with additional local interac-
tions: the so-called sine-Gordon model [187]. Due to the
very nature of these interactions, the boson field can be
compactified on a circle with a radius that depends on the
Tomonaga-Luttinger parameter R = 1/

√
4πK , which, in

turn, controls the power-law decay of two-point functions
of the original microscopic degrees of freedom [188]. In
the present situation, the additional local interactions in the
trapped-ion crystal shall not be those of the sine-Gordon
model [187], such that there is no reason to compactify
the scalar field. Moreover, as the original degrees of free-
dom are already a discretized version of the bosonic field,
the Luttinger parameter will not appear in the two-point
functions. In fact, one can readily see that this parame-
ter does not modify the Heisenberg equations of motion
of the scalar field, and will thus not appear in the disper-
sion relation. In spite of this, as discussed in the following
subsection, the Tomonaga-Luttinger parameter plays an
important role in the presence of λφ4 interactions, control-
ling the amount of quantum fluctuations in the structural
phase transition of the ion crystal. However, prior to that,
let us give some additional insight on the microscopic
expressions for ct, m0, and K .

The effective speed of light ct can also be derived from
a coarse-grained elastodynamical theory of the ion crystal.
As discussed around Eq. (C4) of the Appendix, deforma-
tions with shear strain lead to sound waves that do not alter
the length of chain, but describe shape deformations. The
speed of such transverse sound waves can be expressed in
terms of the crystal density ρ and the shear modulus μr
through

ct =
√
μr

ρ
. (78)

In this case, the shear modulus measures the rigidity of the
ion chain to changes to its linear shape, as opposed to the
compression and expansion that would be described by
the bulk modulus and lead to longitudinal sound waves.

Within this gradient expansion, the shear modulus reads

μr = 1
2a

∑
j �=i

κz
i,j |xj − xi|2 cos(ks|xj − xi|)

= maω
2
xa
�3

a3 log 2, (79)

where, in the last equality, we take the thermody-
namic limit N → ∞, substituted ks|xj − xi| = π |j − i|,
and summed the corresponding series

∑∞
r=1(−1)r/r =

− log 2. Within this homogeneous approximation, the mass
density of the ion chain is ρ = ma/a, and the transverse
speed of sound

ct =
√

e2

4πε0

log 2
maa

, (80)

which leads directly to the corresponding expression in
Eq. (75), upon using the length scale in Eq. (69).

Let us now derive the expression for the bare mass
or, equivalently, the Compton wavelength ξ0 associated to
these massive scalar bosons. By multiplying the first and
third terms in Eq. (74) and, likewise, in the trapped-ion
Hamiltonian (66), we find the following expression:

ξ−2
0 = m2

0c2
t

�2

= 1
c2

t

⎡
⎣ω2

z −
∑
j �=i

2κz
j ,i(−1)j −i

ma
sin2

(
1
2

ks|xj − xi|
)⎤
⎦ .

(81)

Once again, taking the thermodynamic limit in the homo-
geneous bulk for the ion chain, we find

ξ0 = a
ωx

ωzz

√
�3

a3 log 2, (82)

where the zigzag mode frequency, Eq. (76), is obtained by
summing the series

∑∞
r=1[1 − (−1)r]/r3 = 7ζ(3)/4. This

Compton wavelength, Eq. (82), will be a key quantity
below, and leads directly to the bare mass of Eq. (75).

Let us now give a physical interpretation of the
Tomonaga-Luttinger parameter. First of all, the conformal
boson is a self-dual QFT under the transformation π(x) ↔
φ(x), K ↔ 1/K , such that the definition of the Tomonaga-
Luttinger parameter as K or K−1 depends on convention.
We follow the choice in Refs. [21,53], although we note
that it is also customary to take the inverse convention
in condensed matter [176,180]. Also note that the nor-
malization of the fields may differ, and one often finds
definitions K → K/2π [189]. For these different choices,
one can relate the Tomonaga-Luttinger parameter to the

020352-19



MARTÍN-VÁZQUEZ, AARTS, MÜLLER, and BERMUDEZ PRX QUANTUM 3, 020352 (2022)

sound speed and the thermal compressibility of a 1D
harmonic chain [190,191]. With our current convention,
and considering the transverse nature of the trapped-ion
displacements, this relation would involve the rigidity
modulus instead

ctK = μra2

�
, (83)

which leads to the corresponding parameter of Eq. (75).
Being proportional to the shear modulus, the Tomonaga-

Luttinger parameter is thus a measure of the rigidity
of the ion chain to shear deformations. As discussed in
more detail in the following section, given the current
microscopic interpretation in terms of shear rigidity, it
is not surprising that the Tomonaga-Luttinger parameter
gets renormalized by additional anharmonicities. Indeed,
prior to the canonical rescaling mentioned below Eq. (74),
the coarse-grained Lagrangian of the ion chain would be
LKG = (K2/2)[�2∂μφ∂

μφ − m2
0c2

tφ
2], which can be read-

ily identified with our discussion of the wave-function
renormalization for the λφ4 theory in the Appendix below
Eq. (B16). The difference here is that, for the trapped-ion
chain, the Tomonaga-Luttinger parameter can be inter-
preted as a wave-function renormalization K2 ↔ z−1

φ that
occurs already in the free theory, and is a consequence of
the underlying rigidity of the ion chain. From this perspec-
tive, it is not surprising that this rigidity gets renormalized
by anharmonicities, which gives a physical interpreta-
tion of the field-theoretic multiplicative renormalizations.
Eq. (56), due to the sunrise Feynman diagram. Indeed,
such “noninteracting multiplicative renormalizations” are
directly taken care of by the parameter definition of the
coarse-grained theory, Eq. (74).

Let us now present an alternative account of these results
that will be useful later. Since the harmonic trapped-ion
Hamiltonian (66) is quadratic, one can derive an exact
description of the collective vibrational branches in the
homogeneous limit by a simple Fourier transform [174].
The collective-mode frequencies for transverse z vibra-
tions are

ω2(k) = ω2
z +

∑
j �=i

2
ma
κz

j ,i sin2
(

1
2

k|xj − xi|
)

, (84)

where the momentum belongs to the first Brillouin zone
BZ = {k = (2π/Na)n : n ∈ ZN }. In the thermodynamic
limit, the exact dispersion relation is expressed in terms
of the Riemann ζ function and the series representation of
the polylogarithm

Lin(z) =
∞∑

r=1

zr

rn , (85)

where z ∈ C and the radius of convergence is |z| ≤ 1
[125]. In the present case, the polylogarithms are evaluated

at the N roots of unity to yield the following dispersion
relation:

ω2(k) = ω2
z + ω2

x
�3

a3

[
2ζ(3)− Li3

(
eika) − Li3

(
e−ika)] .

(86)

One can now Taylor expand the polylogarithms around
the lowest-energy mode for the transverse vibrations ka ≈
π + δka for |δk| 
 π/a, to find

ω2(δk) ≈ ω2
z − ω2

x
�3

a3

(
7
2
ζ(3)− (δka)2 log 2

)

= m2
0c4

t

�2 + c2
t δk

2, (87)

where one obtains the same expressions for the effective
speed of light and Compton wavelength as in Eqs. (80) and
(82), respectively. As already advanced above, the disper-
sion relation gives us no information about the Tomonaga-
Luttinger parameter, which can be either extracted from
the gradient expansion, or using the above relationship
ctK = μra2/� = c2

t maa/�. It is interesting to note that,
while the longitudinal vibrational modes for a harmonic
crystal with dipolar couplings do not lead to a well-defined
sound speed ω2

δk ≈ |k|2 log |k| [174], the transverse sound
speed of the ion crystal is perfectly valid, Eq. (103), due to
the repulsive nature of the harmonic couplings, Eq. (66),
and the out-of-phase oscillations of neighboring ions in
the lowest-energy mode. This is the underlying reason for
our choice to focus on the transverse vibrations of the ions
along the z axis.

We have seen that the transverse displacement of each
ion can be described by a scalar quantum field discretized
in a lattice formed by the positions of the ions in the
Coulomb crystal. In addition, at each of these positions,
we have all the electronic degrees of freedom of each ion,
among which we select only a pair of energy levels {|0x〉 =
|↑x〉 , |1x〉 = |↓x〉}. These will typically correspond to long-
lived levels in the ground- and/or metastable-state mani-
folds. The specific choices lead to the so-called hyperfine,
Zeeman, optical, or fine-structure qubits [15], where we
recall that ω0 is the transition frequency between the two
corresponding levels. Using the discretized version of the
orthogonal projectors introduced around Eq. (5), Q(t, x) =
|↑x〉 〈↑x| = I − P(t, x), the dynamics of the internal and
motional degrees of freedom is described by

H0 = Hh + a
∑
x∈�s

δε(x)Q(t, x), δε(x) = �ω0

a
, (88)

where the vibrational Hamiltonian in the long-wavelength
harmonic approximation corresponds to Eq. (74). Accord-
ing to our long-wavelength description, this system will
then correspond to a scalar-σ model, Eq. (47), for S = 1

2 .
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The coupling of the qubits to the vibrational degrees
of freedom is realized by shining electromagnetic radi-
ation into the ion crystal, which stems from additional
laser or microwave sources, again depending on the chosen
qubit type [15]. In order to achieve the form of the Ising-
Schwinger sources, either in the Z(x) basis, Eq. (17), or any
other Pauli basis, one typically works in the Lamb-Dicke
regime of resolved sidebands [163]. Here, one selects the
propagation direction and frequency of the radiation to
couple selectively to the desired vibrational branch by
creating or annihilating a single phonon. The desired Ising-
Schwinger sources can be achieved by using a Mølmer-
Sørensen [192] or Leibfried [193] scheme, both of which
generate a so-called state-dependent force that underlies
the realization of multiqubit entangling gates for quantum
computation [194]. For concreteness, following the discus-
sion in the first part of this paper, we focus on Z-dependent
forces and hyperfine and Zeeman qubits, but remark that
similar expressions can be found for other Pauli opera-
tors depending on the qubit choice. Following the notation
introduced in Ref. [53], but sticking to the use of fields in
SI units, the corresponding spin-phonon coupling can be
rewritten as

V̂ = a
∑
x∈�s

cos(ksx)
g
a

sin(
ωLt −
kL · x)Z(t, x)φ(t, x).

(89)

Here,
kL (
ωL) is the wavevector (frequency) of the beat
note arising from a pair of interfering laser beams, and g =
��L
kL · ez

√
maa3 is the coupling strength between the

qubits and the scalar field, which is controlled by the two-
photon Rabi frequency �L [193]. By a direct comparison
with the harmonic Ising-Schwinger sources introduced in
Eq. (35), we directly find that the harmonic dependence of
the source is fully tunable via the laser’s beat note

ωJ = 
ωL, kJ = 
kL. (90)

Let us now discuss the role of the Tomonaga-Luttinger
parameter. As already discussed above, in order to arrive
at the corresponding expression of the Klein-Gordon QFT,
we should use a canonical transformation of the fields
φ(x) → φ(x)/K , π(x) → Kπ(x). For a pure scalar the-
ory, this rescaling has no effect on the dynamics, such
that the Tomonaga-Luttinger parameter does not have any
dynamical manifestation. However, as soon as we couple
the scalar field to the Ising spins, the situation changes.
Since the Tomonaga-Luttinger parameter is a measure of
the harmonic internal forces that quantify the shear stress
of the crystal, it does not appear directly in the bare cou-
pling strength of the Ising-Schwinger sources, which can
be understood as external sources that lead to shear strain.
Note however that, under the canonical transformation of
the fields mentioned above, the Ising-Schwinger sources

will get effectively rescaled by the Tomonaga-Luttinger
parameter, which can be interpreted as Hook’s law in
disguise (i.e., strain proportional to stress) [195,196]. Con-
sidering the additional alternation due to the oscillating
nature of the lowest-energy ks = π/a vibrational mode,
one finds that the amplitude of Ising-Schwinger sources is

J0 → J0(x) = −J0 cos(ksx), J0 = g
K

. (91)

Hence, the Tomonaga-Luttinger parameter will appear
in the strength of the boson-mediated Ising interactions,
Eq. (29). This will be particularly important in the presence
of nonlinearities for the sound waves. As commented in the
paragraph below Eq. (83), the Tomonaga-Luttinger param-
eter can be understood as a noninteracting wave-function
renormalization, and one will get further renormalizations
when including interactions, modifying the strength of the
spin-spin couplings.

Finally, to conclude with the discussion about the
trapped-ion realization, the additional transverse field
Ht(x) in Eq. (35) can be obtained by adding another source
of radiation, either from additional laser beams, or from
an external microwave source, tuned in resonance with the
carrier transition instead of the vibrational sidebands [163].
Altogether, the time-evolution unitary, Eq. (36), would
depend on

V̂ =
∑
x∈�s

J0(x) sin(
ωLt −
kL · x)Kφ(t, x)Z(t, x)

− htX (t, x), (92)

where the transverse field ht = ��0/2 
 �ω0 depends on
the carrier Rabi frequency �0.

According to the generic results of Sec. II, the source
term, Eq. (92), will lead to Ising interactions mediated by
the effective massive Klein-Gordon fields, which can be
written as

Heff = 1
2

n∑
i=1

n∑
j =1

Jij Z(xi)Z(xj )− ht

n∑
i=1

X (xi). (93)

Here, the Ising couplings, Eq. (29), must be updated to
account for the spatial modulation of the source couplings,
Eq. (91), yielding

Jij = −2J0(xi)GE
meff
(xi − xj ) cos

[
kJ ,x(xi − xj )

]
J0(xj ).

(94)

We recall that the decay of the interactions with the dis-
tance is controlled by the dimensionally reduced Euclidean
propagator, which corresponds to d = 1 dimensions,
Eq. (28), in this case, with an effective mass, Eq. (26),
that depends on the frequency of the harmonic sources.
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Note that, however, all of the expressions in Secs. II and
III use natural units. In the context of trapped ions, one
can translate them into SI units by exchanging the mass
parameter in favor of an effective Compton wavelength
m2

eff → ξ−2
eff = ξ−2

0 −
ω2
L/c

2
t , such that

ξeff = ct√
ω2

zz −
ω2
L

, (95)

where we recall that the beat note is always red detuned
with respect to the transverse vibrational branch 
ωL �
ωzz = min{ω(k), k ∈ [0, 2π/a)}. In addition, to be consis-
tent with the SI units, the Euclidean propagator in Eq. (29)
should be rescaled as GE

meff
(x1 − x2) → GE

meff
(x1 − x2)/�

2.
We recall that these spin-spin couplings can be measured
by monitoring the dynamics of an initial product state of
the spins, as described around Eq. (39). There are also
alternative spectroscopic techniques that also allow one to
infer the spin-spin couplings by sweeping the frequency
ωm of a periodic modulation of the transverse field ht →
ht + δht sin(ωmt) [197].

We thus see that, as announced in the previous sections,
the trapped-ion setup offers an ideal scenario where to
apply our results for the harmonic Ising-Schwinger sources
in Sec. II, and the effective Ising interactions mediated by
the scalar Klein-Gordon field. In fact, following the sem-
inal works [34,172], there have been numerous trapped-
ion experiments [35,36,198–205] that have explored the
physics of phonon-mediated Ising-type interactions with
an increasing number of qubits. Our results indicate that
the long-wavelength QFT describing these experiments in
the harmonic regime is indeed the previous scalar-σ model
(47) in the absence of self-interactions. This unveils the
key role played by the generating functional of the mas-
sive Klein-Gordon QFT for a particular type of source: the
harmonic Ising-Schwinger source, Eq. (35). This not only
allows for a neat connection of recent trapped-ion exper-
iments to the physics of relativistic QFTs, but shall also
be useful in the two following aspects. On the one hand,
it sheds light on the specific decay law of the spin-spin
couplings for sufficiently large ion crystals, complement-
ing the results presented in Refs. [206,207] as discussed
in the following paragraph. On the other hand, the results
presented in Sec. III show a very interesting path for the
characterization of renormalization effects in such medi-
ated Ising interactions, which take place when the scalar
bosons are not described by free Klein-Gordon fields, but
instead through a self-interacting λφ4 QFT. The follow-
ing two sections will present a detailed account of that
situation.

Let us then finish this section by discussing the effec-
tive range of the phonon-mediated spin-spin interactions
in the harmonic approximation of the trapped-ion crystal.
To simplify the discussion, we orient the laser beams such
that 
kL · xi = 0, neglecting in this way the additional

frustration of the spin-spin couplings [208,209]. Using the
explicit form of the Euclidean propagator, Eq. (32), and
substituting in Eq. (29) the trapped-ion expressions of the
effective speed of light and the Compton wavelength, we
find

Jij = −(−1)i−j Jeff
ξeffa2

�3 e−(|xi−xj |/ξeff). (96)

Here, we define a coupling strength

Jeff = ��2
Lη

2
x

ωx

2
log 2

, (97)

where ηx = 
kL
√

�/2maωx is the so-called Lamb-Dicke
parameter. The crucial point is that, according to the
expression of the effective Compton wavelength, Eq. (95),
by controlling the detuning of the laser beat note with
respect to the resonance with the lowest-energy zigzag
mode 
ω2

L � ω2
zz, one can control the exponential decay

of the Ising interactions.
Interestingly, Eq. (96) shows the same distance depen-

dence as the exponential tail of the spin-spin couplings
derived in Ref. [206], where no reference is made to an
effective QFT for the ion chain, nor to the role of the
Feynman propagators or the generating functional. This
agreement serves as a validation of our approach, and gives
a concrete physical interpretation of the decay length ξeff
in Eq. (96) as the effective Compton wavelength of the
bosons. It also clarifies that the alternation in Eq. (96) is
the remnant of the separation of fast and slow variations
during the coarse graining, Eq. (70). We also note that
Eq. (96) gives a more-accurate estimate of the exponential
decay, Eq. (95), with respect to the approach of Ref. [206],
since the latter uses additional approximations for both the
dispersion relation and the spin-spin coupling strengths.

On the other hand, the authors of Ref. [206] identified
a key aspect of systems with long-range interactions: there
can be additional contributions to the spin-spin interactions
due to the power-law couplings between the oscillators,
Eq. (67), as also corroborated by alternative perturbative
studies [207]. In order to account for these terms, we
should work with the full lattice propagator in continuous
time, which can be written as


lat
m0
(x) =

∫
k̂

̃lat

m0
(k̂)e−ikx, 
̃lat

m0
(k̂) = i

k̂2 − ω2
z + iε

,

(98)

where the lattice version of the 2-momentum is

k̂ =
⎡
⎣ω,

∑
j �=i

2
ma
κz

j ,i sin2
(

1
2

k|xj − xi|
)⎤
⎦ , (99)
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and we use the short-hand notation
∫

k̂ = ∫
R
(dω/2π)(1/N )∑

k∈BZ. In the thermodynamic limit N → ∞, the dimen-
sionally reduced Euclidean lattice propagator reads

Glat
meff
(x) = a

∫ 2π/a

0

dk
2π

eikx

ω2(k)−
ω2
L

. (100)

Here, ω(k) stands for the trapped-ion dispersion relation
(84), which accounts for the full contribution of the long-
range couplings expressed in terms of polylogarithms (86).
In the expression above, we define the Brillouin zone
k ∈ [0, 2π/a), such that the low-energy zigzag mode ks =
π/a lies exactly in the middle. The spin-spin couplings,
Eq. (29), for 
kL · xi = 0 read

Jij = −��2
Lη

2
x2ωxGlat

meff
(xi − xj ). (101)

The integral of Eq. (100) can be evaluated by extending the
momentum ka → z to the complex plane z = x + iy ∈ C.
As discussed below, the properties of the lattice prop-
agator can be understood via the analytic structure of
f (z) = 1/[ω2(z)−
ω2

L]. Note that the complex-valued
dispersion relation

ω2(z) = ω2
z + ω2

x
�3

a3

[
2ζ(3)− Li3

(
eiz) − Li3

(
e−iz)] ,

(102)

requires analytical continuation of the polylogarithms
as one leaves the real axis, since |e±iz| = e∓y > 1 lies
beyond the radius of convergence of the power series,
Eq. (85). Inspired by the analytical techniques underlying
the Källén-Lehman spectral representation of the two-
point Feynman propagator [20,210–212], we now provide
a derivation of the spin-spin couplings alternative to Ref.
[206]. In this spectral representation, the full propagator of
an interacting QFT can be described as a sum of free prop-
agators, which arise from either isolated single-particle
poles at the renormalized mass, or from a branch-cut
discontinuity that appears above a certain threshold, and
represents multiparticle excitations. This situation finds a
clear parallelism in our case due to the power-law cou-
plings, as f (z) contains both a pair of complex-conjugate
simple poles z− = (z+)∗, and a branch cut connecting the
branch point zb of the polylogarithms at e±izb = 1 with
the point at infinity along the imaginary axis (see Fig. 5).
To understand why the corresponding contributions to
the spin-spin couplings are simply added, one can apply
Cauchy’s theorem [213] along the multiple keyhole con-
tour γ displayed in this figure, which allows us to rewrite
the complex function as follows:

f (z) = r
z − z+

+ r∗

z − z−
+
∫ ∞

0

ds
2π

disc[f (z)]
is − z

. (103)

Here, r, r∗ are the residues of the simple poles,
and disc[f (z)] = limε→0+[f (is + ε)− f (is − ε)] is the

FIG. 5. Cauchy’s theorem and branch-cut structure: we use
Cauchy’s theorem f (z) = (1/2π i)

∮
γ

dw[f (w)/(w − z)] for the
multiple keyhole contour γ , which avoids the isolated poles and
the branch cut such that the function is analytic inside. The sim-
ple poles lie at z± = π ± i/ξeff, where the effective Compton
wavelength is given in Eq. (95). This describes the broadening
and screening of the zigzag mode ksa = π . The residues of the
poles are r = r∗ = πξeffa/c2

t , where the effective speed of light
is given by Eq. (80). The branch point at eeizb = 1 is connected
to the point at infinity by a branch cut along the positive imagi-
nary axis, displaying a discontinuity that is calculated using the
properties of the polylogarithms, leading to Eq. (103).

branch-cut discontinuity. For any short-range discretiza-
tion of the scalar field, which substitutes the derivatives
by finite differences that involve only a finite number of
neighbors like Eq. (73), this discontinuity is absent and
one gets only the contribution of the simple poles. On
the other hand, for power-law couplings such as those in
Eq. (67), the complex dispersion relation (102) contains
polylogarithms with the branch-cut discontinuity Lin(es +
iε)− Lin(es − iε) = 2π isn−1/
(n) for ε → 0+ and s > 0,
where 
(n) is the 
 function. Considering the simplified
dependence on z ∈ C of the function (103), calculating the
Fourier transform in Eq. (100) that yields the spin-spin
couplings, Eq. (101), becomes direct.

In the context of the Källén-Lehman representation of
the two-point function of an interacting QFT at zero tem-
perature [20], the single-particle pole would be aligned
along the real axis z+ = z− ∈ R, leading to a renormal-
ized propagator corresponding to the term r/(z − z+) →
ir/(k2 − m2

r + iε). The branch cut, which would also be
aligned along the real axis, would start at a certain thresh-
old above the single-particle pole where multiparticle exci-
tations can be created by the interactions. The associated
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discontinuity, which is related to the continuous part of
the so-called spectral function ρc(s), weights the contribu-
tion of each of the free Klein-Gordon propagators. These
would contribute to the term 1/(z − is) → i/(k2 − M 2 +
iε), and would be characterized by a mass M above the
multiparticle threshold of the theory [20].

Following this analogy, the additive structure for the
spin-spin couplings has the following interpretation. The
isolated poles give rise to an exponentially decaying
contribution, which coincides exactly with the long-
wavelength result, Eq. (96). In addition, due to the branch-
cut discontinuity, we get an additive contribution that can
be understood as the superposition of each of the Euclidean
propagators above threshold, which in this case corre-
sponds to the imaginary semiaxis. Thanks to the use of
Cauchy’s theorem, Eq. (103), there is no need to iden-
tify steepest-descent directions, nor to perform any fur-
ther approximations as discussed in Ref. [206], and the
corresponding integral in s leads to

Jij = Jeff

(
(−1)i−j +1 ξeffa2

�3 e−(|xi−xj |/ξeff)

+ ω4
x log 2

(ω2
z −
ω2

L)
2

�3

|xi − xj |3
)

. (104)

This expression shows that, for distances much larger than
the effective Compton wavelength, Eq. (95), |xi − xj | �
ξeff, the decay of the spin-spin couplings is dominated by
an antiferromagnetic dipolar tail. As one approaches the
resonance with the zigzag mode from below 
ωL → ωzz,
the contribution of the alternating exponential becomes
more pronounced, and there are deviations from the dipolar
decay. In Fig. 6(b), we compare these analytical predic-
tions to the exact expression of the Ising couplings for an
inhomogeneous crystal of 171Yb+ ions. As shown in this
figure, there is a clear agreement of the spin-spin couplings
even for an inhomogeneous lattice spacing.

We note that using the exact expressions for the disper-
sion relation and the boson-mediated Ising couplings, as
we do in this work, should give more accurate estimates
of the spin-spin couplings, especially in the vicinity of
the structural phase transition. Regardless of these quan-
titative details, our conclusion is the same as in Ref.
[206]: although phonon-mediated Ising couplings in small
trapped-ion crystals can be approximated by a power-
law decay with a tunable exponent [198–204], theoretical
predictions about static or dynamical effects that aim to
describe the thermodynamic limit should consider that
Eq. (104) is not a power-law decay with a tunable expo-
nent [207]. Otherwise, some of the predicted phenomena,
such as phase diagrams or quantum phase transitions that
depend on the power-law exponent would not represent
what can be explored with trapped-ion experiments.

FIG. 6. Trapped-ion chain and effective Ising couplings:
(a) equilibrium positions for a chain of N = 50 171Yb+ ions.
The gray lines depict the long-range spin-spin couplings J 1

ij
between the center-most ion j0 = N/2 and the rest of the chain.
(b) The exact spin-spin couplings, represented by circles, are cal-
culated from J 1

ij = |�L|2Er
∑

n[Mi,nMjn/(
ω
2
L − ω2

z,n)], where
{ωz,n, Mi,n}N

n=1 are the eigenvalues and eigenvectors obtained
from the diagonalization of Eq. (66), and Er = p2

L/2ma is the
recoil energy of the ions due to the beat-note momentum pL =
�
kL [205]. We note that for the 171Yb+ ions, the Ising inter-
actions typically use a Mølmer-Sørensen scheme, such that
the roles of the X , Z operators must be reversed. The dashed-
dotted lines correspond to the coarse-grained predictions of
Eq. (104) with no fitting parameter, but directly using the
microscopic expressions of all the parameters derived in the
main text, and substituting the homogeneous approximation
x0

i = ia for the inhomogeneous positions of (a). The different
curves and data correspond to different detunings of the laser
beat notes with respect to the zigzag mode (ωzz −
ωL)/2π ∈
{18.75, 37, 5, 93.75, 187.5, 937.5} kHz.

B. Anharmonic trapped-ion crystals: λφ4 fields, sound
renormalization, and Ising models

The real advantage of the present approach is that
it allows us to explore situations beyond the harmonic
approximation of the trapped-ion crystal. Anharmonic cor-
rections to the vibrational Hamiltonian (66) become par-
ticularly relevant in the vicinity of structural transitions
for anisotropically confined ion crystals [214]. By increas-
ing the ratio of the secular trap frequencies ωx/ωz in the
regime ωy � ωz � ωx, the linear configuration becomes
unstable towards ladderlike structures with an increasing
number of legs, which have been characterized in several
experiments [209,215–219]. The first structural change
between the ion chain and a so-called zigzag ladder cor-
responds to a second-order phase transition taking place
at some critical ωx/ωz

∣∣
c, which can be described by an

effective Landau model [111]. In our work, we work in
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the regime ωx/ωz � ωx/ωz
∣∣
c, such that the linear con-

figuration is stable, but we are sufficiently close to the
structural phase transition where the anharmonic correc-
tions become important. In the context of elasticity theory,
this is the so-called yield limit, where a small increase in
stress causes a large strain, and one expects large devia-
tions from Hook’s law [196]. Note that we are focusing on
the vicinity of the structural phase transition, but making
sure the crystal is still in the linear configuration, as the
zigzag structure will be accompanied by additional excess
micromotion synchronous with the rf potential of the lin-
ear Paul trap [164,165], and combining this driven motion
with a coarse-grained QFT model lies beyond the scope of
this work.

In the vicinity of this phase transition, the most relevant
corrections H = Hh + Ha to Eq. (66), coming from higher
orders in the Taylor expansion of the Coulomb potential,
are

Ha = 1
2

∑
i

∑
j �=i

βz
i,j

4!
(
ui,z − uj ,z

)4, (105)

where we introduce the anharmonic coupling strengths

βz
i,j = e2

4πε0

9
|xi − xj |5 . (106)

One now proceeds with the substitution of the gradient
expansion in SI units, Eqs. (70) and (71), to ultimately
find that the long-wavelength anharmonic corrections to
the massive Klein-Gordon QFT, Eq. (74), corresponds to
a quartic self-interaction

Ha ≈ a
∑
x∈�s

1
4!
λ0K4φ4(t, x). (107)

Let us note that the canonical rescaling φ(x) → φ(x)/K ,
π(x) → Kπ(x) yields the standard λφ4 QFT in SI units

H = a
∑
x∈�s

1
2

[(
c2

t

�2π
2(x)+ �

2[∇̂xφ(x)]2 + m2
0c2

t φ
2(x)

)

+λ0

4!
φ4(x)

]
, (108)

where we introduce the quartic coupling

λ0 = 8
m2

a

K4

∑
j �=i

βz
j ,i sin4

(
1
2

ks|xj − xi|
)

, (109)

which reads as follows in the thermodynamic limit:

λ0 = 279ζ(5)
2K4 m3

aω
2
x�

3. (110)

Once we derive the complete coarse-grained theory, and
find the microscopic trapped-ion expressions of the bare

parameters in Eqs. (75), (90), (91), and (109), we can
directly apply the results of Sec. III to understand how
the dynamics of the Ising spins changes due to the lead-
ing anharmonicities of the ion crystal in the vicinity of the
structural phase transition. As concluded around Eq. (61),
the main contribution to the dynamics can still be described
by the long-range quantum Ising model, Eq. (93), but one
must consider renormalized spin-spin couplings

J r
ij = −2Jr(xi)GE

meff,r
(xi − xj )Jr(xj ), (111)

with renormalized sources, Eq. (91), and an effective
renormalized mass that flows with the quartic coupling,
Eq. (63). As discussed in Sec. III, all these renormal-
izations account for the various scattering processes of
the phonon mediating the interactions, as it propagates
between the two distant spins, Eq. (51).

In order to connect to the perturbative calculations
of Sec. III, which use natural units, we recall that the
effective-mass term meff should be substituted by an inverse
length scale related to the Compton wavelength 1/ξeff =
meffct/� in SI units, Eq. (95). Likewise, in natural units,
the renormalization equations (57) indicate that the cou-
pling constant λ0 has natural dimension dλ0 = 4 − D = 2.
Hence, it should be substituted by a combination of SI
parameters λ0, �, ct that carries units of inverse length
squared. In the present case, this leads to

λ0ct

�3 = a−2

K
279ζ(5)
2 log 2

. (112)

Accordingly, we can use the perturbative equations
(55)–(57) by substituting λ0 → λ0ct/�

3, as well as m2
eff →

m2
effc2

t /�
2. However, we face the problem that was already

alluded to in connection to interacting QFTs: these pertur-
bative corrections introduce UV divergences, which must
be dealt with by means of the renormalization group (RG).
In the present trapped-ion context, these divergences are
an artefact of our coarse-grained description, and will
always be regularized by the physical UV cutoff due to the
underlying lattice

|k| ≤ �c = π

a
, |k0| ≤ ct

π

a
. (113)

Note that this equation coincides exactly with Debye’s
cutoff in solid-state crystals discussed in Eq. (C5) of the
Appendix, since the length of the 1D crystal would be
L = Na when a is the lattice spacing. The goal of the renor-
malization group is then not to deal with infinities, but to
extract the universal features of the renormalized theory,
Eq. (29), that will not depend on short wavelengths on the
order of the lattice spacing a, but describe instead length
scales ξ � a. We deal with these RG predictions in the
following section.
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C. Rigidity and renormalization-group predictions

The typical starting point of the Wilsonian RG [106,149]
is the normalization factor N in Eq. (B3). After a Wick
rotation τ = it, this factor can be interpreted as the parti-
tion function N → Z of a model of statistical mechanics
in a higher spatial dimension D = d + 1, where the free
energy corresponds to the QFT action, Eq. (B3), in imag-
inary time, the so-called Euclidean action. This partition
function displays the same renormalization of the micro-
scopic couplings gi, together with the aforementioned UV
divergences, as those discussed in Sec. B via the normal-
ized generating functional. The key idea of the RG is that,
after regularizing these divergences by introducing a UV
cutoff�c, the microscopic couplings will flow in the larger
parameter space of all possible couplings of the theory
{gi(�c)}, the so-called theory space. This flow occurs as
one lowers the cutoff in order to focus on the low-energy
or infrared (IR) behavior [106,220]. A quantitative descrip-
tion of this RG flow can be obtained by first performing a
coarse-graining step on the partition function, where one
integrates out the high-energy modes at the cutoff scale
k ∈ [
c/s,
c] for some parameter s > 1. After such a
coarse graining, a second RG step consists of rescaling the
momenta and fields in order to compare the original par-
tition function Z with the coarse-grained one, extracting
how the microscopic parameters run with the cutoff, and

finding differential equations for the RG flow [106,149].
Given our focus on the normalized generating functional
in this work, as it is the key quantity to understand the
effective Ising dynamics for the full model of λφ4 fields
coupled to spins, Eq. (58), we revisit this RG procedure
using the results of Appendix B and Sec. III B.

Let us start by discussing the first RG step. From now
on, we set natural units � = ct = 1, keeping in mind our
previous discussion to connect the results to the SI trapped-
ion units. After the Wick rotation, we can define the
space-time points and wave vectors as follows: x = (it, x)
and k = (−ik0, x), which are D = 2 Euclidean vectors.
In the absence of the Ising spins, one can calculate the
perturbative expansion of the full generating functional
(B5) by separating the slow ϕ<(x) and fast ϕ>(x) field
components

ϕ<(x) =
∫ �c/s

0

d2k
(2π)2

e−ik·xϕ(k),

ϕ>(x) =
∫ �c

�c/s

d2k
(2π)2

e−ik·xϕ(k), (114)

where the scalar product is now Euclidean. The diagram-
matic expansion in the absence of Ising spins in Eq. (B6)
can be rewritten in Euclidean time as follows:

(115)

where we see that some of the factors preceding the dia-
grams change sign, and all become real. Additionally,
we note that the lines now stand for the free Euclidean
propagator


E
m0
(x) =

∫
k

̃E

m0
(k)e−ik·x,


̃E
m0
(k) = 1

k2 + m2
0

=: 
̃E
m0,k, (116)

such that, for slow components (solid lines), the momen-
tum integrals extend to |k| ∈ [0,�c/s], whereas for fast
components (dashed lines), they extend to a small annulus
around the UV cutoff |k| ∈ [�c/s,�c]. Note that the ellip-
sis in Eq. (115) now contains, in addition to higher-order
terms in the interaction strength, also Feynman diagrams
that involve other combinations of slow and fast compo-
nents, e.g., tree level diagrams with only fast-mode prop-
agators. However, the current combinations in Eq. (115)
suffice to understand the RG flow, as they capture the effect

that the coarse-grained over fast modes within the annulus
around the cutoff will have on the slow modes, and thus on
the low-energy IR theory.

As discussed around Eq. (B7), the additional scattering
terms, Eq. (115), lead to an effective generating func-
tional in which the bare parameters get renormalized. In
this case, such a renormalization is a result of the coarse
graining over fast modes, such that the dressed parame-
ters now become cutoff dependent. For instance, the bare
mass m2

0 → m2
0 + δm2

0 changes due to the tadpoles and
sunrise mass renormalization of the fast modes similarly
to Eq. (55), namely

δm2
0 = λ0

2

∫ f

k1


̃E
m0,k1

×
[

1 − λ0

∫ f

k2

(
1
2

̃E

m0,k1
+ 1

3

̃E

m0,k1+k2

)

̃E

m0,k2

]
,

(117)
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where the integrals restricted to momenta of the fast
modes, as indicated by

∫ f
k = ∫

(�c/s)<|k|<�c
|k|(d|k|/2π).

Likewise, the interaction strength changes according to
λ0 → λ0 + δλ0, where

δλ0 = −3λ2
0

2

∫ f

k1

(

̃E

m0,k1

)2
. (118)

The next RG step is to rescale the variables and fields,
recovering the original cutoff. In this way, the resulting par-
tition function or, in this case, the generating functional can
be compared to the original one, such that the flow in the-
ory space can be extracted. At this step, the sunrise diagram
and the wave-function renormalization, Eq. (B16), lead-
ing to the multiplicative mass and source renormalizations,
Eq. (56), come into play

k → k′ = sk, ϕ(k) → ϕ
(
k′s−1) = s2z−1

m0,λ0
ϕ′(k′),

(119)

where the integrals are again restricted to the fast modes

z−1
m0,λ0

= 1 + λ2
0

6

∫ f

k1


̃E
m0,k1

∫ f

k2

(

̃E

m0,k1+k2

)2

̃E

m0,k2
.

(120)

After this rescaling, one can obtain the total running of the
microscopic couplings in theory space. The only step left is
to extract the system of differential equations for infinites-
imal coarse-graining s = eδ� ≈ 1 + δ�. This allows us to
approximate the above Euclidean integrals, and leads to

dm2
0

dδ�
= 2m2

0 + λ0

4π
�2

c

�2
c + m2

0
,

dλ0

dδ�
= 2λ0 − 3λ2

0

4π
�2

c

(�2
c + m2

0)
2

. (121)

Up to this point, the discussion parallels the standard RG
treatment of the λφ4 QFT based on the partition function
[106,149]. For the D = 2 case, these RG equations are not
very informative, as both couplings are relevant already at
tree level (i.e., they grow exponentially as one approaches
long wavelengths). Indeed, any self-interacting term ϕ2n

with n ≥ 3 will also be relevant, bringing us away from
the Gaussian fixed point (m0, λ0) = (0, 0).

We note that the Tomonaga-Luttinger parameter of the
original low-energy description, Eq. (74), does not seem to
play any role in the RG treatment, as we have rescaled the
fields to get the standard QFT, Eq. (108). Note, however,
that this parameter is proportional to the shear modu-
lus of the ion crystal, and thus quantifies how rigid the
system is. Accordingly, the effect of the quantum fluctu-
ations introduced by the canonically conjugate momentum

operators in Eq. (74) will be inversely proportional to
the Tomonaga-Luttinger parameter. As neatly discussed in
Ref. [221], even if the above RG equations (121) do not
contain information about the nonperturbative fixed point
that controls the scaling of the phase transition (i.e., the
D = 2 analog of the Wilson-Fisher fixed point for D =
4 − ε); they can determine how the classical critical point
m2

0

∣∣
c = 0 changes with the strength of the quartic interac-

tions towards m2
0(λ0)

∣∣
c �= 0 when quantum fluctuations are

very small. Following Ref. [221], quantum fluctuations are
controlled by a dimensionless effective Planck’s constant

�̃ = �

maωxa2 =
√
(�3/a3) log 2

K
, (122)

which we find to be inversely proportional to the
Tomonaga-Luttinger parameter. For the crystal of 171Yb+

ions (see Fig. 4), K = 1.3 × 105 and quantum fluctua-
tions are thus highly suppressed �̃ = 3.1 × 10−5. Since the
quartic-interaction parameter in SI units, Eq. (112), is pro-
portional to K−1 ∝ �̃ 
 1, the flow equations (??) can be
rewritten in a way that the dependence on quantum fluc-
tuations becomes apparent. In particular, linearizing them
around m2

0 = 0 allows the prediction of how this classical
critical point changes as a function of the quantum fluc-
tuations. To make contact with our previous exposition of
the trapped-ion problem, we rewrite this result in terms of
the Luttinger parameter and use SI units for the interaction
strength, Eq. (112), such that

m2
0c2

t

�2

∣∣∣∣
c
= 279ζ(5)

16πKa2 log 2
(

log K − log K∗). (123)

Here, K∗ is a nonuniversal parameter that can be extracted
from the numerical results of Ref. [221] via Eq. (122), such
that K∗ ≈ 58.98 for the 171Yb+ crystal. We note that this is
a nonuniversal property, unlike the scaling behavior of the
structural phase transition, which is controlled by a nonper-
turbative fixed point that, due to symmetry considerations,
must be in the universality class of the 2D Ising model
[222].

With this perturbative RG prediction, we can analyze
how the boson-mediated Ising interactions will change
due to the quartic interactions. In particular, their decay,
Eq. (104), is controlled by the effective Compton wave-
length of the bosons in the coarse-grained theory before
the dipolar tail takes on. Since the classical critical point
moves according to Eq. (123), the effective Compton
wavelength can still be described by Eq. (95) if we sub-
stitute ω2

zz → ω2
zz + δω2

zz, where

δω2
zz = ω2

x
�3

a3

279ζ(5)
16πKa2

(
log K − log K∗) (124)

includes the renormalization of the bare parameters due to
the quartic interactions. We now make the following two
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remarks. On the one hand, the combination of this shift
with the scaling of Eq. (95) is consistent with the scaling
properties of the Gaussian fixed point. We know, on the
other hand, that the correlation length should be controlled
by the Ising universality class, in which case the scaling
will differ. In any case, since the correction in Eq. (124)
turns out to be rather small (i.e.,

√
δω2

zz/ωzz = 2.5 × 10−3

for the 171Yb+ crystal of Fig. 6), it will be very challeng-
ing to probe these differences experimentally, which is a
result of the very large rigidity of the ion crystal and the
suppressed quantum fluctuations. In the last section of this
paper, we discuss how this rigidity could be controlled by
introducing additional parametric drivings of the crystal
that allow one to tune the value of the shear modulus and,
in turn, lower the Tomonaga-Luttinger parameter.

D. Parametric drivings to control the shear modulus

In this section, we discuss how the shear rigidity and, in
turn, the Tomonaga-Luttinger parameter can be controlled
by introducing a fast parametric modulation of the trans-
verse trap frequency ωz. As discussed in Ref. [223], the
transverse modes of the harmonic ion crystal are rather
special in the sense that the total number of local vibra-
tional excitations of the ions is a conserved quantity for the
timescales of interest. This is a consequence of the micro-
scopic parameters in Eq. (66), which fulfil �|κz

ij |/4maωz 

2�ωz. Accordingly, one can treat the local vibrations as
particles tunneling between neighboring ions, and explore
experimentally their propagation along the Coulomb crys-
tal, as realized in various recent experiments [224–231].
Moreover, the corresponding tunneling amplitude can be
controlled by Floquet engineering via periodic modula-
tions [232], mimicking situations considered for electrons
in solids [233] and beyond [234,235]. In the present con-
text, we consider a site-dependent parametric modulation
of the trap frequency

ωz → ωz + ωdηi cos(ωdt), (125)

where ωd is the parametric driving frequency, and ηi =
i
η is a relative modulation amplitude that increases lin-
early along the ion chain. We consider the fast-modulation
regime, such that the aforementioned tunneling gets
dressed in analogy to what occurs for electrons in solids
[233]. For the transverse vibrations, this effect can in turn
be recast as a dressing of the shear modulus, Eq. (79), of
the ion crystal

μ̃r ≈ 1
2a

∑
j �=i

κz
i,j |xj − xi|2 cos(ks|xj − xi|)J0

[

η(j − i)

]
,

(126)

where we introduce the zeroth Bessel function of the
first kind J0(x) ≈ √

2/πx cos [(π/4)− x] for x � 1. This

approximation requires �|κz
i,j |/4maωz 
 �ωd, �ωz, where

ωd �= ωz, where corrections due to rapidly rotating terms
will be vanishingly small, and the main contribution of the
parametric drivings is the dressing of the shear modulus,
Eq. (126).

Note that this parametric dressing can even change
the sign of the tunneling [233], inverting the band struc-
ture, and changing the role of the zigzag mode. This
can be avoided in the present context, ensuring that the
dressed rigidity μr > 0, by working with modulations

η ∈ (5.3, 9), as depicted in Fig. 7. This figure shows that
the dressed rigidity can achieve much smaller values for

η � 5.3, or 
η � 9. Accordingly, both the transverse
speed of sound and the Tomonaga-Luttinger parameter,
Eq. (75), can be reduced considerably, such that the ion
crystal is less rigid and the effect of quantum fluctua-
tions will become more important at the expense of a
slower transverse speed of sound. For instance, for 
η =
5.33, we would get K ≈ 3.2 × 103, effectively reducing the
Tomonaga-Luttinger parameter by 2 orders of magnitude.

In contrast, in this regime �|κz
i,j |/4maωz 
 �ωd �= �ωz,

the bare mass of the scalar bosons and the quartic cou-
pling, Eq. (110), would get no appreciable dressing as they
are purely local terms. Accordingly, the effective range of
the Ising spin-spin interactions in the harmonic limit of
the crystal are still described by Eq. (95), and can thus be
controlled by setting the frequency of the state-dependent
force closer or further from the zigzag mode, taking into
account the flow of the classical critical point, Eq. (123),
due to the quartic interactions. Since this shift scales with
log K/K , the dressing scheme will amplify the effects of
the quartic interactions, making the corresponding change
in ξeff more amenable to be measured experimentally. Note,
however, that including the specific parametric modula-
tion, Eq. (125), may require the use of microfabricated trap
electrodes in the spirit of Ref. [231], or global modulations,
such as those stemming from ac-Stark shifts [209,234] that

FIG. 7. Dressed shear modulus: ratio of the dressed shear
modulus, Eq. (126), and the original shear modulus, Eq. (79),
of the parametrically driven crystal of 171Yb+ ions, as a function
of the relative modulation amplitude 
η in Eq. (125).
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will lead to similar dressing effects in the long-wavelength
description of the ion chain. Therefore, although the effect
of the quartic interactions is amplified by reducing the
rigidity of the crystal, the experimental complexity also
increases.

V. CONCLUSIONS AND OUTLOOK

We have presented a new perspective on a protocol
for the interferometric sensing, Eq. (12), of the generat-
ing functional of a scalar QFT [53], which clarifies the
role of the interactions between the quantum sensors medi-
ated by the scalar bosons, Eq. (16), and the requirement
of multipartite entanglement in the initial state. This has
allowed us to propose a new simplified sensing scheme,
which uses unentangled probes that are coupled to the
scalar field via always-on harmonic sources, Eq. (20), and
which evolve under an effective quantum Ising model with
long-range couplings, Eq. (29), controlled by a dimen-
sionally reduced Euclidean propagator of the scalar field,
Eq. (28). In the presence of self-interactions, these Ising
spin-spin interactions are mediated by virtual λφ4 bosons
that can also scatter. This regime can be explored using
functional-integral methods by means of a scalar-σ model,
Eq. (47) and a diagrammatic expansion, Eq. (51), which
shows that this additional scattering leads to renormal-
izations of the spin-spin couplings between the sensors,
and further 2n-spin interactions (58). In the regime of
interest, we have argued that the real-time dynamics is
dominated by a renormalized quantum Ising model, where
the pairwise interactions get additive and multiplicative
renormalizations, Eqs. (55)–(57).

These formal results find a natural application for D =
1 + 1 dimensions in the physics of crystals of trapped
ions close to a structural phase transition, and subjected
to state-dependent forces. We have shown that a coarse-
grained elastodynamical theory, Eq. (74), yields a trans-
parent long-wavelength description of phonon-mediated
spin-spin interactions in harmonic trapped-ion crystals,
Eq. (96), and that additional branch-cut contributions to
the spin-spin couplings, Eq. (104), can be incorporated
by considering the full lattice propagator, Eq. (100). By
approaching the structural phase transition, the quartic
nonlinearities start playing a role, and we use RG predic-
tions to estimate how the bare couplings flow, Eq. (124),
and how this flow will affect the range of the interactions
in a regime where the rigidity of the ion crystal is very
large, and the quantum fluctuations are largely suppressed.
Finally, we have discussed a parametric driving scheme
that can lead to a reduction of the shear modulus of the
crystal, Eq. (126), which should amplify the effect of the
nonlinearities in the effective Ising model.

Although the formalism hereby presented is specific to
the zero-temperature λφ4 QFT, the underlying ideas can be
readily generalized to finite temperatures, to other QFTs of

interest, and other couplings between the Ising sensors and
the corresponding field operators. This could include com-
posite operators in the Ising-Schwinger sources, Eq. (17),
opening a route to probe fermionic QFTs, or to connect
to generating functionals of other types of correlations
functions in bosonic QFTs. Likewise, although we have
focused on Lorentz-invariant QFTs, the underlying idea
can also be applied to long-wavelength descriptions of
quantum many-body systems where Lorentz invariance is
not recovered at criticality.

Regarding the application to trapped-ion crystals, we
have focused on D = 1 + 1 dimensions and the linear-to-
zigzag structural phase transition. It would be interesting
to find the coarse-grained description of other situations,
such as two-dimensional triangular crystals of ions in Pen-
ning traps, or specific layouts of microfabricated Paul
or Penning traps with other crystalline configurations. In
addition, there are other types of structural phase transi-
tions that can lead to other effective QFTs, and it would
be interesting to understand the sensing scheme presented
in our work for those situations. In addition to trapped-
ion crystals, our results may also find applications in other
quantum technologies, such as superconducting qubits
coupled to Josephson-junction arrays, or other variants of
transmission lines where nonlinear effects can play a role.
In the atomic realm, one could also explore the application
of our formalism to atomic impurities trapped coupled to
ultracold quantum gases.
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APPENDIX A: GENERATING FUNCTIONAL OF
KLEIN-GORDON FIELDS

In this Appendix, we start with a basic description of the
canonical quantization of a scalar QFT [104,105], which
appears in many textbooks, e.g., Refs. [20,124]. We then
introduce the concept of the generating functional [236],
and make explicit derivations using canonical quantization
instead of functional integral methods. This derivation will
serve to set the notation, and discuss the sensing schemes
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in the main text using a QFT language that is closer to
quantum optics, preparing the ground for the functional-
integral formalism used at later stages. As discussed in the
main text, this derivation is useful to clarify key aspects of
the interferometric scheme to measure such a generating
functional by incorporating Ising spins [53], or the simpler
sensing scheme that relies on the appearance of effective
Ising models in specific dynamical situations.

The generating functional Z0[J ] depends on the so-
called Schwinger sources J (x) [236], which, in the canon-
ical formalism, are introduced as perturbations of the
Klein-Gordon Hamiltonian density, Eq. (1), as follows:
H0 → H0 + VJ , where

VJ = −J (x)φ(x), (A1)

and φ(x) is the scalar-field operator described below
Eq. (1). The sourced time-evolution operator U(tf , t0) =
UH0UVJ can be expressed in terms of two unitaries

UH0 = e−i
∫

dDH0 , UVJ = T
{

e+i
∫

dDJ (x)φH (x)
}

. (A2)

Here, T{·} is the time-ordering operator, and we intro-
duce the fields φH (x) = (UH0)

†φ(x)UH0 evolving in
the Heisenberg picture with respect to the unsourced
Klein-Gordon Hamiltonian (1). In this picture, the vac-
uum persistence amplitude 〈0| UVJ |0〉 can be used
to define the normalized generating functional, as it
clearly encodes all the information about n-point Feyn-
man propagators of the field theory, G(n)

0 (x1, . . . , xn) =
〈0| T{φH (x1) · · ·φH (xn)} |0〉. These can be recovered by
taking functional derivatives

Z0[J ] = 〈0| UVJ |0〉 , G(n)
0 (x1, . . . , xn)

= (−i)nδnZ0[J ]
δJ (x1) · · · δJ (xn)

∣∣∣∣
J=0

. (A3)

In order to derive the explicit expression of the normalized
generating functional, and the corresponding Feynman
propagators, we use the canonical mode expansion

φH (x) =
∫

ddk
(2π)d2ωk

(
ake−ikx + a†

keikx
)∣∣∣

MS
,

πH (x) =
∫

ddk
(2π)d2

(−i)
(

ake−ikx − a†
keikx

)∣∣∣
MS

, (A4)

where kx = kμxμ = ωkt − k · x is the Minkowski product
for μ ∈ {0, 1, . . . , D − 1} on mass shell (MS) with

ωk =
√

k2 + m2
0. (A5)

This is the dispersion relation of the Klein-Gordon
massive bosons, which can be created or annihilated

by the covariant creation-annihilation operators a†
k, ak,

which satisfy Lorentz-invariant commutation relations[
ak, a†

k′
] = (2π)d2ωkδ

d(k − k′). Up to the zero-point
energy, the Hamiltonian terms in their corresponding pic-
tures become

H0 =
∫

ddk
(2π)d

ωk

2ωk
a†

kak,

VJ (t) = −
∫

ddk
(2π)d

Jk (t)
2ωk

a†
keiωkt + H.c., (A6)

where we introduce the Fourier transform of the Schwinger
sources Jk (t) = ∫

ddx J (t, x)e−ik·x.
Let us note that the contribution of the sources to the

evolution operator (A2) can be evaluated to the desired
order of the coupling J (x) by means of the Magnus expan-
sion [114,115]. Moreover, for free Klein-Gordon fields,
this expansion can be truncated at second order without
any approximation

log UVJ = −i
∫ tf

t0
dt1VJ (t1)

− 1
2

∫ tf

t0
dt1

∫ t1

t0
dt2 [VJ (t1), VJ (t2)]. (A7)

Using the Baker-Campbell-Haussdorf formula [237] to
normal order the exponential of the first term, and con-
sidering the explicit time ordering of the second one, one
finds that

UVJ =: e−i
∫

dDxJ (x)φH (x) :

e−(1/2) ∫ dDx1
∫

dDx2J (x1)
m0 (x1−x2)J (x2), (A8)

where : : is the normal-ordering symbol, and we introduce
the following space-time function:


m0(x) =
∫

ddk
(2π)d

1
2ωk

(
e−ikxθ(t)+ e+ikxθ(−t)

)∣∣
MS .

(A9)

As customary in canonical quantization [20], the mass-
shell condition in Eq. (A9) can be automatically imposed
by introducing an extra contour integration over k0, such
that


m0(x) =
∫

k

̃m0(k)e

−ikx, 
̃m0(k) = i
k2 − m2

0 + iε
,

(A10)

where one directly identifies Feynman’s two-point propa-
gator of the Klein-Gordon field for ε → 0+, and we use the
short-hand notation

∫
k = ∫

dDk/(2π)D. Since the normal-
ordered term in Eq. (A8) will have a vanishing contribution
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when acting on the Klein-Gordon vacuum, one can eas-
ily see that the vacuum persistence amplitude in Eq. (A3)
yields

Z0[J ] = e−(1/2) ∫ dDx1
∫

dDx2J (x1)
m0 (x1−x2)J (x2), (A11)

which gives rise to any n-point propagator upon functional
differentiation, Eq. (A3), in accordance to Wick’s theorem,
e.g.,

G(2)
0 (x1, x2) = − δ2Z0

δJx1δJx2

∣∣∣∣
J=0

= 
m0(x1 − x2) =: 
m0,12,

(A12)

for the two-point function, and the four-point function

G(4)
0 (x1, . . . , x4) = 
m0,12
m0,34 +
m0,13
m0,24

+
m0,14
m0,23. (A13)

From now onwards we refer to the normalized Z0[J ],
or its interacting version Z[J ], as simply the generating
functional.

APPENDIX B: GENERATING FUNCTIONAL OF
INTERACTING λφ4 FIELDS

In this Appendix, we describe the connection of the gen-
erating functional to the perturbative approach to QFTs
based on Feynman diagrams, in which the λφ4 model plays
a key role [238]. Although this is discussed in several text-
books, e.g., Refs. [20,124,239], this Appendix makes our
work self-contained, and presents the results in a way that
are useful to connect to the effective Ising models, making
this material more amenable to the quantum-technology
community not familiarized with QFT functional methods.

The time-evolution operator in the presence of classi-
cal Schwinger sources, Eq. (A1), U(tf , t0) = UH UVJ , can
again be expressed in terms of two unitaries

UH = e−i
∫

dDxH , UVJ = T
{

e+i
∫

dDxJ (x)φH (x)
}

, (B1)

where the field operators φH (x) = U†
H φ(x)UH now

evolve in the Heisenberg picture with respect to the full
interacting λφ4 model, Eq. (40), in the absence of sources,
thus accounting for possible scattering events. In this case,
the “vacuum” persistence amplitude will lead to the full
generating functional

Z[J ] = 〈0| UVJ |0〉 , G(n)(x1, . . . , xn)

= (−i)nδnZ[J ]
δJ (x1) · · · δJ (xn)

∣∣∣∣
J=0

, (B2)

where |0〉 is the ground state of the interacting QFT, and the
functional derivatives yield the full n-point propagators.

Note that, depending on the bare parameters of the theory,
this ground state can support a nonzero particle content via
spontaneous symmetry breaking [132,133], although it is
still customary to refer to it as the “vacuum.” In this paper,
we are only interested in regimes with unbroken symmetry.

We note that the exact expression, Eq. (A7), for
the source contribution to the evolution operator,
Eq. (B1), is no longer valid in the presence of inter-
actions, and working with the canonical formalism gets
cumbersome rapidly. Hence, one typically switches to
functional integral methods. As customary, one uses the
field and momentum representation at fixed time t = x0,
φ(x) |{ϕ(x0, x)}〉 = ϕ(x0, x) |{ϕ(x0, x)}〉, π(x) |{�(x0, x)}〉
= �(x0, x) |{�(x0, x)}〉, where the eigenvalues are now
classical fields, and the eigenvectors form a complete
orthonormal basis [20,239]. By splitting the time evolution
in infinitesimal lapses, one can introduce the resolution
of the identity at nearby fixed instants of time, alternat-
ing the use of the field and momentum basis. Performing
a Gaussian integral over the momentum fields �(x0, x),
the generating functional (B2) can be expressed as the
functional integral

Z[J ] = 1
N

∫
DϕeiS, S =

∫
dDx

[
L0 − Vint(ϕ)− VJ (ϕ)

]
,

(B3)

where Dϕ is the functional-integral measure. Here,
the action is expressed in terms of the Klein-Gordon
Lagrangian

L0 = 1
2
∂μϕ(x)∂μϕ(x)− 1

2
m2

0ϕ
2(x), (B4)

where ∂μ = (∂t, ∇), ∂μ = (∂t, −∇), and the source and
interaction parts correspond to Eqs. (A1) and (40), respec-
tively, expressed in terms of the basis fields φ(x) → ϕ(x).
In addition, we introduce a normalization factor in terms of
the unsourced action N = ∫

DϕeiS
∣∣
J=0 such that Z[0] = 1.

A central result in the perturbative approach to QFTs
is that the full generating functional can be expressed in
terms of the noninteracting one, Eq. (11), as follows:

Z[J ] = e−i
∫

dDxVint(−iδJ (x))Z0[J ]

e−i
∫

dDxVint(−iδJ (x))Z0[J ]
∣∣∣
J=0

, (B5)

where we introduce a short-hand notation for the functional
derivatives δJ (x) = δ/δJ (x). In perturbative treatments,
one typically expands the exponential of the interacting
potential to the desired order of the interaction strength
λ0, allowing for a graphical representation in terms of
Feynman diagrams. In our case, keeping second-order
terms with at most four sources, we get the following
diagrammatic representation:
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i i

(B6)

which should be read as follows: crosses × = J (x) repre-
sent the Schwinger sources acting at different space-time
locations x, and blobs = λ0 stand for interaction vertices
with the bare quartic coupling. Solid lines that join a cross
and a blob should be translated into ×−− = 
m0(x − z),
and thus involve the free d-dimensional Feynman propa-
gator (10) from the source at x to the vertex at z. Likewise,
solid lines connected to the same blob stand for interac-
tion loops that should be translated for © = 
m0(0), while
those connecting two distant blobs must be substituted by
the propagator between the corresponding points −− =

m0(z1 − z2). For each of the above diagrams, we should
integrate over all possible space-time locations of the
sources

∫
dDxi, and those of the intermediate interaction

vertices
∫

dDzi.
This perturbative expression (B6) suffices to understand

the main effects of the scalar-field self-interactions. The
standard approach calculates how the two- and four-point
functions G(2)(x1, x2), G(4)(x1, . . . , x4), obtained by substi-
tuting Eq. (B6) in Eq. (B2), change with respect to the free
ones, Eqs. (A12) and (A13), due to the self-interactions.
This leads to a neat discussion of the appearance of diver-
gences, the need to regularize the QFT, and renormal-
ization [20,124,239]. We focus instead on rewriting this
perturbative series as a renormalized generating functional,
as this sets the stage for our calculation of the changes
in the effective Ising model, Eq. (38), when upgrading to
Ising-Schwinger sources, as described in the main text.
For the moment, we focus on the first four diagrams of
Eq. (B6), which involve a pair of sources. The first three
diagrams are combinations of the so-called tadpole, and
one can see that a renormalized functional

Zr[J ] = e−(1/2) ∫ dDx1
∫

dDx2J (x1)
mr (x1−x2)J (x2), (B7)

generates directly these terms to second order in λ0 if the
propagator has the following additive mass renormaliza-
tion:

m2
0 → m2

r = m2
0 +�(0). (B8)

Here, we introduce the so-called self-energy �(k),
which relates the full and free propagators via the
Dyson-Schwinger equation [107,108,240], namely

iG̃−1(k) = i
̃−1
m0
(k)+�(k), G̃(k) = i

k2 − m2
0 −�(k)

,

(B9)

such that the renormalization of the mass by the zero-
momentum self-energy, Eq. (55), becomes apparent.

To show that the different powers of the Taylor
series of the renormalized generating functional (B7) are
equivalent to the first three diagrams, one must apply∫

dDke−ik(x−y)/(k2 − m2
0 + iε)2 =−(2π)D∫ dDz
m0(x − z)


m0(z − y) repeatedly, and consider a mass renormaliza-
tion �(0) = �

(1,td)
m0,λ0

+�
(2,td)
m0,λ0

with

�
(1,td)
m0,λ0

= λ0

2

∫
k1


̃m0(k1), (B10)

for the single-tadpole diagram [i.e., first diagram in
Eq. (B6)], and

�
(2,td)
m0,λ0

= −i
λ2

0

4

∫
k1

∫
k2


̃2
m0
(k1)
̃m0(k2), (B11)

for the double-tadpole diagram [i.e., second diagram in
Eq. (B6)]. Interestingly, the third diagram is directly gener-
ated by the Taylor expansion of the exponential, and does
not contribute with an additional renormalization of the
mass. In the language of QFTs, the self-energy only has
contributions from one-particle irreducible (1PI) diagrams,
namely those that cannot be split into two disconnected
diagrams by cutting a single internal line and propagator.
Since the third diagram in Eq. (B6) can indeed be split in
a couple of disconnected tadpoles, it does not contribute to
the self-energy as just shown.

Finding the contribution of the fourth diagram in
Eq. (B6), the so-called sunrise diagram, to a renormal-
ized generating functional like Eq. (B7) is slightly more
involved. While the tadpole diagrams involve virtually
excited bosons with a momentum that is independent to
that of the propagating bosons; this is not the case for the
virtual bosons in the sunrise diagram. As a consequence,
its contribution to the self-energy depends on the exter-
nal momentum, and cannot be simply recast as a mass
renormalization, Eq. (55). In fact, one finds

�(2,sr)(k)= −i
λ2

0

6

∫
k1

∫
k2


̃m0(k1)
̃m0(k2)
̃m0(k − k1 − k2),

(B12)
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which can be expanded in a power series of the external
momentum as follows:

�(2,sr)(k) = �
(2,sr)
m0,λ0

+ k2 ∂�
(2,sr)(k)
∂k2

∣∣∣∣
k2=0

+ · · · . (B13)

To zeroth order in the external momentum, one finds that
the sunrise diagram indeed contributes to the renormalized
mass via �(0) = �

(1,td)
m0,λ0

+�
(2,td)
m0,λ0

+�
(2,sr)
m0,λ0

, where

�
(2,sr)
m0,λ0

= −i
λ2

0

6

∫
k1

∫
k2


̃m0(k1)
̃m0(k2)
̃m0(k1 + k2).

(B14)

To next order in the external momentum, one sees through
the Dyson-Schwinger Eq. (B9) that the sunrise diagram
changes the propagator in momentum space, Eq. (10), into


̃m0(k) → G̃(k) = i

z−1
m0,λ0

k2 − m2
r + iε

. (B15)

Here, we introduce the following parameter: z−1
m0,λ0

= 1 −
∂k2�(k)|k2=0, which, for the sunrise diagram, reads

z−1
m0,λ0

= 1 − λ2
0

6

∫
k1

∫
k2


̃m0(k1)
̃m0(k2)
̃
2
m0
(k1 + k2).

(B16)

This effect can be alternatively understood as a renormal-
ization of the derivative terms ∂μϕ∂μϕ → z−1

m0,λ0
∂μϕ∂

μϕ

in the action, Eq. (B4). This leads to the so-called wave-
function renormalization [20,124], where the fields must
be rescaled ϕ(x) → ϕ(x)/√zm0,λ0 in order to recover
the original form of the Klein-Gordon Lagrangian. As a
consequence of this rescaling, one gets a multiplicative
renormalization of both the bare mass m2

0 → m2
r , and the

Schwinger sources J (x) → Jr(x)

m2
r =

(
m2

0 +�
(1,td)
m0,λ0

+�
(2,sr)
m0,λ0

)
zm0,λ0 ,

Jr(x) = J (x)
√

zm0,λ0 . (B17)

It turns out that contributions to Eq. (B13) of a higher-
order in the external momentum are irrelevant in the
renormalization-group sense [106,113,149], and can thus
be neglected at long wavelengths. Taking into account
all these different renormalizations, the full generating
functional of the interacting QFT to second order is

Zr[Jr] = e−(1/2) ∫ dDx1
∫

dDx2Jr(x1)
mr (x1−x2)Jr(x2). (B18)

Once all of the two-source diagrams in Eq. (B6) have been
carefully accounted for in the renormalized generating
functional (B18), we focus on the remaining four-source

processes. We start with the tree-level vertex correspond-
ing to the fifth Feynman diagram, which can be recast
as

e−(i/4!)
∫

dDx1
∫

dDx2
∫

dDx3
∫

dDx4J (x1)J (x2)G
(4,c)
m0,λ0

(x1,x2,x3,x4)J (x3)J (x4).
(B19)

Here, we introduce the connected four-point propagator,
which is consistent with the fact that only 1PI diagrams
should be incorporated in the renormalized generating
functional, as the reducible ones will be automatically
generated by the power expansion of the exponential.
This connected four-point function is obtained from
Eq. (B2) via G(4,c)

m0,λ0
(x1, x2, x3, x4) = G(4)

m0,λ0
(x1 · · · x4)−


m0,12
m0,34 −
m0,13
m0,24 −
m0,14
m0,23. To this low-
est order in the interaction strength, we find

G(4,c)
m0,λ0

= λ0

∫
dDz
m0(x1 − z)
m0(x2 − z)

×
m0(z − x3)
m0(z − x4). (B20)

The sixth diagram in Eq. (B6) can be seen as a tadpole dec-
oration of the previous one, which, together with higher-
order terms involving more tadpoles, can be accounted for
by considering the connected propagator with a renormal-
ized mass. Note that the seventh diagram, and higher-order
disconnected diagrams of the like, are already accounted
for by the expansion of the functional (B18) to the cor-
responding order. Had we considered O(λ3

0) corrections,
we would have also obtained a disconnected four-source
diagram decorated with a sunrise graph, which is again
directly accounted for if we use the renormalized func-
tional in Eq. (B18). Therefore, all of these decorations are
accounted for by substituting G(4,c)

m0,λ0
→ G(4,c)

m̃r,λ0
in Eq. (B19)

with the additive and multiplicative renormalizations of the
mass and sources.

Once again, we have left the discussion about a diagram
leading to new effects, the eighth diagram of Eq. (B6), for
the last part of this Appendix. This term describes how the
four-point interaction can be mediated by a pair of virtual
bosons exchanged between a pair of propagating particles.
Therefore, it will lead to a renormalization of the coupling
strength λ0 → λr

λr = λ0 + 

(4)
m0,λ0

, 

(4)
m0,λ0

= −i
3λ2

0

2

∫
k1


̃2
m0
(k1), (B21)

which should also be complemented with the wave-
function renormalization

λ̃r =
(
λ0 + 


(4)
m0,λ0

)
z2

m0,λ0
. (B22)

The combination of all these renormalizations must
be included in the following renormalized generating
functional:
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Zr[Jr] = e−(1/2) ∫ dDx1
∫

dDx2Jr(x1)
mr (x1−x2)Jr(x2)−(i/4!)
∫

dDx1
∫

dDx2
∫

dDx3
∫

dDx4Jr(x1)Jr(x2)G
(4,c)
mr ,λr (x1,x2,x3,x4)Jr(x3)Jr(x4). (B23)

We close this Appendix by noting that higher-order
terms in the expansion will lead to 2n-source contribu-
tions with n = 3, 4, . . . coupled to the corresponding renor-
malized connected 2n-point propagator. In the limit of
impulsive sources, one would obtain the 2n-point propa-
gator, including also the disconnected pieces, by evaluat-
ing the corresponding functional derivatives (B2) on the
renormalized functional (B23).

APPENDIX C: ELASTIC CRYSTALS:
COMPRESSIBILITY, MASSLESS

KLEIN-GORDON FIELDS, AND EFFECTIVE
ISING MODELS

Following the multidisciplinary approach of this work,
we include in this Appendix a basic description of the
long-wavelength theory of vibrations of crystalline solids,
a topic that appears in several textbooks [173,174]. This
serves to give a self-contained presentation, but also to
present key concepts in connection to our previous QFT
approach, trying to make the discussions of the main text
more amenable to potential readers from the high-energy-
physics community.

We start by reviewing Debye’s model for the specific
heat of solids [241], which can be understood as the
quantization of a coarse-grained elastodynamical model
[195,196] that captures the dynamics of the crystal at
long wavelengths. A crystalline solid subjected to external
forces can be modeled by a displacement field u(t, x) at a
given instant of time t for each point of the crystal x. This
accounts for a deformation of the solid when its compo-
nents support a nonzero gradient ∇uα(t, x), i.e., expansion
and compression or shear strain. In the theory of elasticity,
the response to such a strain comes in the form of stress
forces acting against the deformation, which have their
microscopic origin in the interatomic short-range interac-
tions that try to restore equilibrium in the solid. For such a
coarse-grained description, these forces are local, and can
be described in terms of pressure and shear stress.

To simplify the description, we consider the academic
problem of a d = 1-dimensional crystal. In this case, strain
can only appear in the form of compression and expansion,
and stress in the form of pressure. For elastic materials,
Hook’s law states that strain and stress are proportional.
In particular, for this simple 1D situation, the compres-
sion and expansion is modeled by the relative change of
the length of the crystal δL/L, which, according to Hook’s
law, must be proportional to the pressure P. This leads to
δL/L = −P/Ke, where Ke is the elastic or bulk modulus.

This parameter can be related to the inverse of the thermal
compressibility βT = −(1/L)(∂L/∂P)

∣∣
T = K−1

e , and thus
quantifies the stiffness of the crystal to external forces, i.e.,
how it resists bulk changes in its length.

For homogeneous elastic solids, the dynamics of the
coarse-grained field is described by a wave equation, the
so-called Cauchy-Navier equation. In this simple 1D case,
setting the crystal along the x axis, this equation describes
vibrations of pressure in the form of a compressional wave
evolving under

(
∂2

t − c2
�∂

2
x

)
ux(t, x) = 0, c� =

√
Ke

ρ
. (C1)

Here, the sound speed c� is defined in terms of the elastic
modulus and the mass density of the crystal ρ, which must
be homogeneous at this coarse-grained scale.

At this point, one can rescale the displacement field to
obtain a D = (1 + 1)-dimensional scalar field with the cor-
rect scaling natural dimension discussed below Eq. (29)
in natural units c� = 1 = �. Denoting by a some charac-
teristic microscopic length scale of the crystal, one finds
that the compressional wave, Eq. (C1), is indeed governed
by the massless Klein-Gordon Lagrangian (B4) with the
following identifications:

φ(x) → 1
a

ux(t, x), c → c�, m2
0 → 0. (C2)

Hence, if one considers that the speed of sound plays
the role of the light speed, there is an effective Lorentz
invariance emerging at long wavelengths in this coarse-
grained one-dimensional crystal. Although this symmetry
is not strictly exact due to the neglected microscopic short-
wavelength details, or possible deviations from Hook’s
law, one expects it to dominate the low-energy behavior
of the crystal, a deep and fundamental result that can be
formalized through the use of the renormalization group
[106,149]. In fact, this emergence of symmetries at the
coarse-grained level underlies contemporary nonperturba-
tive approaches to strongly coupled QFTs, such as lattice
quantum chromodynamics [46,242].

In Debye’s approach, one proceeds by quantizing this
field by the introduction of operators, Eq. (A4), that
create-annihilate quantized collective vibrations (C1), the
so-called phonons

Hp =
∫

dk
2π
ωka†

kak, ωk = |k|, (C3)
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and then calculates the partition function to extract any
thermodynamic quantity, such as the specific heat [173].
Note that our 1D crystal would be unstable with respect
to thermal fluctuations [167–169], and this is why we
categorize it as an academic problem. In more realistic sit-
uations, the crystal would likely consist of weakly coupled
chains, and one would need to consider also deformations
with shear strain, which, according to Hook’s law, are
proportional to the shear stress via a new coefficient: the
rigidity or shear modulus μr [195,196]. These additional
deformations change the longitudinal speed of sound and,
moreover, lead to additional transverse sound waves. For
instance, for the z axis transverse to the weakly coupled
chains, the wave equation is

(
∂2

t − c2
t ∂

2
x

)
uz(t, x) = 0, ct =

√
μr

ρ
. (C4)

This forbids the recovery of Lorentz invariance even
at long wavelengths, as massless fundamental particles
should propagate within a unique light cone, but the lon-
gitudinal and transverse waves propagate with different
speeds of sound. In fact, both longitudinal and transverse
waves play a key role in the usefulness of Debye’s model
to reproduce correctly the specific heat of a thermal solid.
As discussed in the main text, sound waves in laser-cooled
crystals of trapped ions can be selectively excited, such that
either the longitudinal or the transverse branch contributes
to the dynamics, and there is again a Lorentz invariance
emerging at long wavelengths.

It is interesting to note that, despite the absence of inter-
actions and UV loop divergences, Debye’s theory is a
long-wavelength description that requires a frequency cut-
off to recover the correct temperature dependence of the
specific heat [173]. This is the so-called Debye frequency
ωD, which allows one to reduce the number of degrees
of freedom from the infinity of the coarse-grained field
theory, Eq. (C1), into the large, yet finite, number that char-
acterizes the elastic crystal. In d = 1, this hard cutoff would
correspond to

ωk ≤ ωD = π
c�N

L
, |k| ≤ �c = π

N
L

, (C5)

where N is the number of atoms in the solid. This equation
becomes a generic UV cutoff, Eq. (65), using natural units
c� = 1.

To carry this discussion further, let us now address
the difficulties in including the Ising-Schwinger couplings,
Eq. (17), in a solid-state crystal. One may consider a col-
lection of n impurities at positions xi = xiex, each of which
can host electrons in a single orbital of energy ω0. These
impurities are sufficiently far apart that the electrons can-
not tunnel between them, and thus remain localized. In
the regime where all the electrons are spin polarized, e.g.,

using an external magnetic field, they can be described by
spinless fermion operators ci , c†

i with the following simple
Hamiltonian:

He =
∑

i

ω0c†
i ci =

∫
dxδε(x)Q(t, x), (C6)

where we use the energy densities in Eq. (31), and the
Jordan-Wigner transformation Z(t, xi) = 2c†

i ci − 1 [127],
such that the Ising projector is Q(t, x) = [1 + Z(t, x)]/2.
In the context of electron-phonon coupling, a so-called
Holstein coupling [243] of strength g, would then lead to

He-p =
∑

i

gc†
i ci ux(t, xi) =

∫
dxJ (t, x)Z(t, x)φ(t, x),

(C7)

where J (t, x) is defined according to Eq. (35) with J0 =
−2g. In order to get the harmonic time dependence of the
sources, one would need to introduce externally controlled
periodic modulations of the electron-phonon coupling,
which does not sound very realistic. In the main text, we
explore more realistic alternatives based on trapped ions.

Let us close this Appendix by noting how Debye’s cutoff
enters in the discussion. In our high-energy physics model,
we emphasized the importance of using a harmonic source
with a frequency below the bare mass of the scalar field,
avoiding in this way possible resonances and dissipative
processes [see the discussion below Eq. (24)]. Clearly, in
the absence of a UV cutoff, the dispersion relation (A5)
extends to arbitrarily large energies, and the only possi-
bility was to set ω2

J � m2
0. However, in the presence of a

physical cutoff, one can also set ω2
J � �c to avoid such

resonances. For the massless scalar field associated to the
longitudinal phonons, Eq. (C2), we would get effective
Ising interactions with the exponentially decaying cou-
plings in Eq. (32), controlled by m2

eff = ω2
J . In this case,

the spin-spin couplings read

Jij ∝ e−ωJ |txi−xj | cos
[
kJ (xi − xj )

]
, (C8)

where txi−xj = |xi − xj |/c� is the time the sound wave
takes to propagate between the two corresponding spins.

Let us note that, in addition to the limitations already
discussed, including the transverse field, Eq. (38), which
makes the Ising model an archetype for the study of quan-
tum phase transitions [244], would also be unrealistic, as
the Jordan-Wigner transformation would require highly
nonlocal electronic terms. Last, but not least, the simpli-
fied sensing protocol discussed in Sec. II B would require
local measurements of the electronic populations to be
performed and, more critically, the effective spins to be ini-
tialized in a coherent superposition of the impurity being
vacant or occupied by a single electron, which is also not
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very realistic. One could avoid this complication by con-
sidering spinful fermions instead, but then the the problem
would translate into finding materials where the Holstein
coupling, Eq. (C7), is spin dependent. In the main text,
we show that all these drawbacks can be overcome by
moving from solid-state physics to trapped-ion quantum
technologies.
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