000910893 001__ 910893
000910893 005__ 20250416202205.0
000910893 0247_ $$2doi$$a10.1103/PhysRevLett.128.150503
000910893 0247_ $$2ISSN$$a0031-9007
000910893 0247_ $$2ISSN$$a1079-7114
000910893 0247_ $$2ISSN$$a1092-0145
000910893 0247_ $$2pmid$$a35499880
000910893 0247_ $$2WOS$$aWOS:000792585200010
000910893 037__ $$aFZJ-2022-04243
000910893 082__ $$a530
000910893 1001_ $$0P:(DE-HGF)0$$aDalgaard, Mogens$$b0
000910893 245__ $$aDynamical Uncertainty Propagation with Noisy Quantum Parameters
000910893 260__ $$aCollege Park, Md.$$bAPS$$c2022
000910893 3367_ $$2DRIVER$$aarticle
000910893 3367_ $$2DataCite$$aOutput Types/Journal article
000910893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744794433_21163
000910893 3367_ $$2BibTeX$$aARTICLE
000910893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910893 3367_ $$00$$2EndNote$$aJournal Article
000910893 520__ $$aMany quantum technologies rely on high-precision dynamics, which raises the question of how these are influenced by the experimental uncertainties that are always present in real-life settings. A standard approach in the literature to assess this is Monte Carlo sampling, which suffers from two major drawbacks. First, it is computationally expensive. Second, it does not reveal the effect that each individual uncertainty parameter has on the state of the system. In this Letter, we evade both these drawbacks by incorporating propagation of uncertainty directly into simulations of quantum dynamics, thereby obtaining a method that is orders of magnitude faster than Monte Carlo simulations and directly provides information on how each uncertainty parameter influences the system dynamics. Additionally, we compare our method to experimental results obtained using the IBM quantum computers.
000910893 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910893 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
000910893 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910893 7001_ $$0P:(DE-HGF)0$$aWeidner, Carrie A.$$b1
000910893 7001_ $$0P:(DE-Juel1)179158$$aMotzoi, Felix$$b2$$eCorresponding author
000910893 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.128.150503$$gVol. 128, no. 15, p. 150503$$n15$$p150503$$tPhysical review letters$$v128$$x0031-9007$$y2022
000910893 8564_ $$uhttps://juser.fz-juelich.de/record/910893/files/Invoice_INV_22_APR_008202.pdf
000910893 8564_ $$uhttps://juser.fz-juelich.de/record/910893/files/PhysRevLett.128.150503.pdf$$yRestricted
000910893 8767_ $$8INV/22/APR/008202$$92022-04-07$$aBelegn$$d2022-04-13$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2022-01873
000910893 909CO $$ooai:juser.fz-juelich.de:910893$$popenCost$$pVDB$$pOpenAPC
000910893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179158$$aForschungszentrum Jülich$$b2$$kFZJ
000910893 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910893 9141_ $$y2023
000910893 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910893 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910893 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000910893 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000910893 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000910893 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000910893 980__ $$ajournal
000910893 980__ $$aVDB
000910893 980__ $$aI:(DE-Juel1)PGI-8-20190808
000910893 980__ $$aAPC
000910893 980__ $$aUNRESTRICTED
000910893 9801_ $$aAPC