000910897 001__ 910897
000910897 005__ 20240712084526.0
000910897 0247_ $$2doi$$a10.1002/solr.202100916
000910897 0247_ $$2Handle$$a2128/32355
000910897 0247_ $$2WOS$$aWOS:000779095200026
000910897 037__ $$aFZJ-2022-04247
000910897 082__ $$a600
000910897 1001_ $$0P:(DE-Juel1)176607$$aKin, Li-Chung$$b0
000910897 245__ $$aBatteries to Keep Solar‐Driven Water Splitting Running at Night: Performance of a Directly Coupled System
000910897 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910897 3367_ $$2DRIVER$$aarticle
000910897 3367_ $$2DataCite$$aOutput Types/Journal article
000910897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674541262_28604
000910897 3367_ $$2BibTeX$$aARTICLE
000910897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910897 3367_ $$00$$2EndNote$$aJournal Article
000910897 520__ $$aDirect solar-powered hydrogen generation (so-called “green” hydrogen) is promising as a renewable fuel that can be generated anywhere there is sunshine and water. Many attempts are made to integrate a water electrolyzer (EC) and solar cell at different levels (a so-called artificial leaf) to take advantage of the reduced losses from the lack of wiring and optionally increased portability afforded by an integrated unit. However, in many cases, EC catalysts degrade as electrodes depolarize when shut down at night. Much less attention is paid to the need for a minimum current across the EC under insufficient illumination to prevent excessive cyclic degradation. Directly coupling a battery to keep an artificial leaf running at night can address this need and, in theory, also increase solar-to-hydrogen (STH) efficiency. A seven-cell silicon heterojunction module, two bifunctional NiFeMo ECs in series, and a commercial Li-ion NMC battery are selected to provide the same amount of solar output power despite different working voltages and tested in a series of simulated diurnal cycles. The increased average STH efficiency per cycle (11.4% vs. 10.5% without the battery) is analyzed and discussed with implications for future artificial leaf design and implementation.
000910897 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910897 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910897 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b1
000910897 7001_ $$0P:(DE-HGF)0$$aLee, Minoh$$b2
000910897 7001_ $$0P:(DE-Juel1)130246$$aHaas, Stefan$$b3
000910897 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b4
000910897 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b5$$eCorresponding author
000910897 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b6
000910897 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202100916$$gVol. 6, no. 4, p. 2100916 -$$n4$$p2100916 -$$tSolar RRL$$v6$$x2367-198X$$y2022
000910897 8564_ $$uhttps://juser.fz-juelich.de/record/910897/files/Solar%20RRL%20-%202022%20-%20Kin%20-%20Batteries%20to%20Keep%20Solar%E2%80%90Driven%20Water%20Splitting%20Running%20at%20Night%20Performance%20of%20a%20Directly%20Coupled-1.pdf$$yOpenAccess
000910897 8767_ $$d2022-04-07$$eHybrid-OA$$jDEAL
000910897 909CO $$ooai:juser.fz-juelich.de:910897$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176607$$aForschungszentrum Jülich$$b0$$kFZJ
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b1$$kFZJ
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b3$$kFZJ
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b5$$kFZJ
000910897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b6$$kFZJ
000910897 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910897 9141_ $$y2022
000910897 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910897 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000910897 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910897 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910897 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2021$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000910897 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2021$$d2022-11-16
000910897 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910897 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910897 920__ $$lyes
000910897 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910897 9801_ $$aAPC
000910897 9801_ $$aFullTexts
000910897 980__ $$ajournal
000910897 980__ $$aVDB
000910897 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910897 980__ $$aAPC
000910897 980__ $$aUNRESTRICTED
000910897 981__ $$aI:(DE-Juel1)IMD-3-20101013