000009109 001__ 9109
000009109 005__ 20180208200123.0
000009109 0247_ $$2DOI$$a10.1016/j.ssi.2009.09.003
000009109 0247_ $$2WOS$$aWOS:000272817800005
000009109 037__ $$aPreJuSER-9109
000009109 041__ $$aeng
000009109 082__ $$a530
000009109 084__ $$2WoS$$aChemistry, Physical
000009109 084__ $$2WoS$$aPhysics, Condensed Matter
000009109 1001_ $$0P:(DE-Juel1)VDB85752$$aValov, I.$$b0$$uFZJ
000009109 245__ $$aIonic and electronic conductivity of nitrogen-doped YSZ single crystals
000009109 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2009
000009109 300__ $$a
000009109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009109 3367_ $$2DataCite$$aOutput Types/Journal article
000009109 3367_ $$00$$2EndNote$$aJournal Article
000009109 3367_ $$2BibTeX$$aARTICLE
000009109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009109 3367_ $$2DRIVER$$aarticle
000009109 440_0 $$05565$$aSolid State Ionics$$v180$$x0167-2738$$y28
000009109 500__ $$aRecord converted from VDB: 12.11.2012
000009109 520__ $$aThe ionic and electronic charge transport was studied for single crystals of 9.5 mol% yttria-stabilized zirconia with additional nitrogen doping (YSZ:N) of up to 7.5 at.% (referred to the anion sublattice and formula unit Zr0.83Y0.17O1.91) as a function of temperature and nitrogen content. The total conductivity being almost equivalent to the oxygen ion conductivity has been measured by AC impedance spectroscopy under vacuum conditions in order to prevent re-oxidation and loss of nitrogen. The electronic conductivity has been determined by Hebb-Wagner polarization using ion-blocking Pt microelectrodes in N-2 atmosphere. The ionic conductivity of YSZ:N decreases in the presence of nitrogen at intermediate temperatures up to 1000 degrees C. The mean activation energy of ionic conduction strongly increases with increasing nitrogen content, from 1.0 eV for nitrogen-free YSZ up to 1.9 eV for YSZ containing 7.3 at.% N. Compared to nitrogen-free YSZ, the electronic conductivity first decreases at nitrogen contents of 2.17 and 5.80 at.%, but then increases again for a sample with 7.53 at X At temperatures of 850 degrees C and above, the presence of the N3- dopant fixes the electrode potential and thus the oxygen partial pressure at the Pt electrode to very low values. This corresponds to a pinning of the Fermi level at a relatively high energy in the upper half of the band gap. At 7.53 at.% N and 950 degrees C, the oxygen partial pressure in YSZ:N corresponds to p(O2) = 3x10(-18) bar. At temperatures above 850 degrees C, even in the presence of a very small oxygen concentration in the surrounding gas phase, the nitrogen ion dopant becomes highly mobile and thus diffuses to the surface where it is oxidized to gaseous N-2. The results are discussed in terms of the ionic and electronic defect structures and the defect mobilities in YSZ:N. (C) 2009 Elsevier B.V. All rights reserved.
000009109 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000009109 588__ $$aDataset connected to Web of Science
000009109 650_7 $$2WoSType$$aJ
000009109 65320 $$2Author$$aNitrogen electrochemistry
000009109 65320 $$2Author$$aIonic conductivity
000009109 65320 $$2Author$$aElectronic conductivity
000009109 65320 $$2Author$$aNitrogen doping
000009109 65320 $$2Author$$aYSZ
000009109 65320 $$2Author$$aHebb-Wagner measurements
000009109 7001_ $$0P:(DE-HGF)0$$aRührup, V.$$b1
000009109 7001_ $$0P:(DE-HGF)0$$aKlein, R.$$b2
000009109 7001_ $$0P:(DE-HGF)0$$aRödel, T.-C.$$b3
000009109 7001_ $$0P:(DE-HGF)0$$aStork, A.$$b4
000009109 7001_ $$0P:(DE-HGF)0$$aBerendts, S.$$b5
000009109 7001_ $$0P:(DE-HGF)0$$aDogan, M.$$b6
000009109 7001_ $$0P:(DE-HGF)0$$aWiemhöfer, H.-D.$$b7
000009109 7001_ $$0P:(DE-HGF)0$$aLerch, M.$$b8
000009109 7001_ $$0P:(DE-HGF)0$$aJanek, J.$$b9
000009109 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2009.09.003$$gVol. 180$$q180$$tSolid state ionics$$v180$$x0167-2738$$y2009
000009109 8567_ $$uhttp://dx.doi.org/10.1016/j.ssi.2009.09.003
000009109 909CO $$ooai:juser.fz-juelich.de:9109$$pVDB
000009109 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000009109 9141_ $$y2010
000009109 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009109 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000009109 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000009109 970__ $$aVDB:(DE-Juel1)118551
000009109 980__ $$aVDB
000009109 980__ $$aConvertedRecord
000009109 980__ $$ajournal
000009109 980__ $$aI:(DE-Juel1)PGI-7-20110106
000009109 980__ $$aI:(DE-82)080009_20140620
000009109 980__ $$aUNRESTRICTED
000009109 981__ $$aI:(DE-Juel1)PGI-7-20110106
000009109 981__ $$aI:(DE-Juel1)VDB881