001     910955
005     20231027114347.0
024 7 _ |a 10.1016/j.commatsci.2022.111830
|2 doi
024 7 _ |a 0927-0256
|2 ISSN
024 7 _ |a 1879-0801
|2 ISSN
024 7 _ |a 2128/33773
|2 Handle
024 7 _ |a WOS:000882200400008
|2 WOS
037 _ _ |a FZJ-2022-04283
082 _ _ |a 530
100 1 _ |a Steinberger, Dominik
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674638334_21125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The lifetime and performance of any engineering component, from nanoscale sensors to macroscopic structures, are strongly influenced by fracture processes. Fracture itself is a highly localized event; originating at the atomic scale by bond breaking between individual atoms close to the crack tip. These processes, however, interact with defects such as dislocations or grain boundaries and influence phenomena on much larger length scales, ultimately giving rise to macroscopic behavior and engineering-scale fracture properties. This complex interplay is the fundamental reason why identifying the atomistic structural and energetic processes occurring at a crack tip remains a longstanding and still unsolved challenge.We develop a new analysis approach for combining quantitative in-situ observations of nanoscale deformation processes at a crack tip with three-dimensional reconstruction of the dislocation structure and advanced computational analysis to address plasticity and fracture initiation in a ductile metal. Our combinatorial approach reveals details of dislocation nucleation, their interaction process, and the local internal stress state, all of which were previously inaccessible to experiments. This enables us to describe fracture processes based on local crack driving forces on a dislocation level with a high fidelity that paves the way towards a better understanding and control of local failure processes in materials.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)
|0 G:(EU-Grant)759419
|c 759419
|f ERC-2017-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Issa, Inas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Strobl, Rachel
|0 P:(DE-Juel1)186856
|b 2
|u fzj
700 1 _ |a Imrich, Peter J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kiener, Daniel
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.commatsci.2022.111830
|g Vol. 216, p. 111830 -
|0 PERI:(DE-600)2014722-3
|p 111830 -
|t Computational materials science
|v 216
|y 2023
|x 0927-0256
856 4 _ |u https://juser.fz-juelich.de/record/910955/files/1-s2.0-S0927025622005419-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910955
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMP MATER SCI : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21