000910962 001__ 910962
000910962 005__ 20230308201754.0
000910962 0247_ $$2doi$$a10.1039/D2CP04089A
000910962 0247_ $$2ISSN$$a1463-9076
000910962 0247_ $$2ISSN$$a1463-9084
000910962 0247_ $$2Handle$$a2128/33441
000910962 0247_ $$2pmid$$a36331005
000910962 0247_ $$2WOS$$aWOS:000879499200001
000910962 037__ $$aFZJ-2022-04290
000910962 041__ $$aEnglish
000910962 082__ $$a540
000910962 1001_ $$0P:(DE-Juel1)179461$$aMohanakumar, Shilpa$$b0
000910962 245__ $$aOverlapping hydration shells in salt solutions causing non-monotonic Soret coefficients with varying concentration
000910962 260__ $$aCambridge$$bRSC Publ.$$c2022
000910962 3367_ $$2DRIVER$$aarticle
000910962 3367_ $$2DataCite$$aOutput Types/Journal article
000910962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673347117_24179
000910962 3367_ $$2BibTeX$$aARTICLE
000910962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910962 3367_ $$00$$2EndNote$$aJournal Article
000910962 520__ $$aWe investigate the thermodiffusive properties of aqueous solutions of sodium iodide, potassium iodide and lithium iodide, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5–4 mol kg^(-1) of solvent, large enough to deal with associated salts, and a temperature range of 15 to 45 °C. All systems exhibit non-monotonic variations of the Soret coefficient S_T with concentration, with a minimum at one mol kg^(-1) of solvent in all three cases. We take this as an indication that the relevant length and energy scales are very similar in all cases. On this basis we develop an intuitive picture in which the relevant objects are the fully hydrated salt molecules, including all water molecules that behave differently from bulk water. Preliminary, somewhat sketchy calculations indicate that indeed Soret coefficients begin to rise beyond concentrations where the fully hydrated particles are randomly close packed. Indications are given as to why the model will fail at large concentrations.
000910962 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000910962 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910962 7001_ $$0P:(DE-Juel1)130773$$aKriegs, Hartmut$$b1
000910962 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b2$$ufzj
000910962 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3$$eCorresponding author
000910962 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D2CP04089A$$gp. 10.1039.D2CP04089A$$n44$$p27380-27387$$tPhysical chemistry, chemical physics$$v24$$x1463-9076$$y2022
000910962 8564_ $$uhttps://juser.fz-juelich.de/record/910962/files/Supplementary%20material.pdf$$yRestricted
000910962 8564_ $$uhttps://juser.fz-juelich.de/record/910962/files/d2cp04089a.pdf$$yOpenAccess
000910962 8767_ $$d2022-12-26$$eHybrid-OA$$jPublish and Read$$zRSC
000910962 909CO $$ooai:juser.fz-juelich.de:910962$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC
000910962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179461$$aForschungszentrum Jülich$$b0$$kFZJ
000910962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130773$$aForschungszentrum Jülich$$b1$$kFZJ
000910962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b2$$kFZJ
000910962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b3$$kFZJ
000910962 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000910962 9141_ $$y2022
000910962 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000910962 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910962 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910962 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-16$$wger
000910962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2021$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000910962 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000910962 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910962 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910962 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000910962 920__ $$lyes
000910962 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000910962 9801_ $$aFullTexts
000910962 980__ $$ajournal
000910962 980__ $$aVDB
000910962 980__ $$aUNRESTRICTED
000910962 980__ $$aI:(DE-Juel1)IBI-4-20200312
000910962 980__ $$aAPC